分数阶扩散方程和分数阶Sine-Gordon方程的数值方法及其快速实现

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:xjl982050
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大量研究表明具有非局部特性的分数阶微分算子非常适用于描述具有记忆特性和遗传性质的材料.因此,近年来分数阶微分方程得到了广泛的关注和应用.然而很多分数阶微分方程的解析解是很难得到的,于是在实际应用中数值模拟成为研究分数阶微分方程的一个重要手段.本文致力于二维Riesz空间分数阶扩散方程及分数阶Sine-Gordon方程的有效数值格式及快速算法的研究.第二章中,采用ADI-CN格式将二维Riesz空间分数阶扩散方程转化成一系列相互独立的一维问题.基于所得到的一维问题的系数矩阵均为实对称正定Toeplitz矩阵,我们提出了一种快速算法来加速该数值格式的实现.最后通过数值算例验证了理论分析的正确性及发展的快速算法在实现该数值格式时的高效性.第三章中,介绍了一个拟紧差分格式求解二维Riesz空间分数阶扩散方程.并运用一些新的技巧证明了该数值格式在离散l∞范数下的收敛阶为O(τ2+hx4+hy4).基于所得差分方程组系数矩阵的特殊形式,提出了一种新的快速算法用于加速该差格式的实现.最后给出一些数值算例验证了理论分析的正确性及发展的快速算法在执行该差分格式时的高效性.第四章中,提出了一个守恒隐式差分格式求解一维Riesz空间分数阶Sine-Gordon方程.并对该数值格式进行了严格的理论分析.为了降低计算开销,提出了一种修改的牛顿迭代法来加速该差分格式的实现.最后通过一些数值实验验证了差分格式的有效性及发展的修改的牛顿迭代法的高效性.第五章中,将第四章发展的差分格式拓展到求解二维Riesz空间分数阶Sine-Gordon方程.并给出了该差分格式的理论分析结果.为了降低计算量,我们采用一种快速算法来加速该差分格式的实现.第六章中,为了避免迭代求解非线性方程组,我们发展了一个线性化差分格式求解时间分数阶Sine-Gordon方程.并对该数值格式进行了严格的理论分析.最后通过数值算例验证了理论结果的正确性.
其他文献
核磁共振(Nuclear Magnetic Resonance,NMR)波谱作为一种无损伤的非侵入性检测技术,业已成为物理、化学、生命科学以及医学等领域研究中一种必不可少的检测手段。高分辨二维谱及多维谱方法可以有效缓解常规一维谱中谱峰拥挤等问题,并获得更多的相关信息,已经成为有机小分子检测以及大分子结构研究中重要的分析工具。然而,高分辨谱图的获取需要有高均匀度的磁场,其空间变化率一般要低于1 pp
C60具有优异的性能,如高温超导电性,因此它的发现激发了对碳团簇广泛的理论和实验研究。C60超导的特性来源于电子-声子耦合,而电声子耦合会随着团簇尺度的减小而增大,因此寻找最小的富勒烯引起了极大的关注。在众多碳团簇中,C20是最小、最简单并且是曲率最大的富勒烯结构。由于C20电声子耦合比C60强,因此可以预测C20。是高温超导的更好的潜在材料。因此,本文研究了基于C20的团簇组装结构。另外,自从石
本文我们考虑几类常见的流体方程,研究它们的强解及相关极限问题,也就是,局部解的粘性消失极限和整体解的衰减这两类问题。更确切地说,粘性消失极限问题是指,当粘性系数或扩散系数趋于零时,粘性流体方程的解收敛到无粘性或理想流体方程的解。在有界区域,边界条件将是一个关键,我们主要考虑的是Slip边界下粘性消失极限问题。而整体解的衰减问题是一个大时间行为,是指当时间趋于无穷大时,能量趋于零,本文也包括衰减率和
E.T.A.霍夫曼是德国18世纪末、19世纪初的著名作家、音乐家、指挥、舞台设计。他被誉为歌德和海涅之间最具世界影响的德国作家。他的很多作品都表现了神秘力量对人的控制,使得人产生分裂和异化,因此他很早就被称为“幽灵霍夫曼”。但他的作品中也确实存在体现和谐、统一的因素,而这些因素都可以归到他最有名的童话小说《金罐》里的“阿特兰提斯”这一概念之中。籍由“阿特兰提斯”表达出来的思想内涵贯穿于霍夫曼的所有
作为计算流体力学研究的一个重要内容,双曲守恒律方程的数值解法在流体力学发展过程中占据着非常重要的地位。在层出不穷的数值计算方法之中,高精度、高分辨率的数值计算方法因为其具有良好的特性,在计算流体力学的发展中占据着重要的地位。本文的主要目的是研究几类具有高分辨率、高精度的数值格式。具体内容如下:首先,我们基于有限体积法思想,通过增加光滑因子中非光滑部分的权重,提出了能有效提高CWENO-Z格式分辨率
随着社会经济的飞速发展和科学技术水平的日益提高,人类面临着越来越复杂的实际决策环境,而决策者认知的模糊性和决策因素的不确定性,导致了决策者往往难以获得确定的决策信息;并且,在实际决策过程中,影响决策者的决策信息越来越多,由此产生的决策数据的维数和量级也越来越大;致使决策者难以进行有效且理性的决策。作为现代决策理论与实践的重要组成部分,直觉模糊多属性决策能够有效的模拟复杂决策环境,而原有基于矩阵理论
弱有限元方法(weak Galerkin finite element methods,简称WG方法)是最近发展起来的求解偏微分方程的有效数值方法.它的主要思想是利用弱微分算子代替传统意义下的微分算子,然后把其应用到通常的变分形式中以数值求解偏微分方程.弱有限元方法的逼近函数为分片间断多项式,逼近函数在单元与单元之间的联系则通过单元边界上的特定多项式实现.自从弱有限元方法在2011年被王军平和叶秀
两相渗流驱动模型多用于石油资源的运移聚集数值模拟,描述在盆地发育中油水运移聚集演化的历史,它对于油田的勘探和合理开发有着极其重要的价值.近年来流体动力学在油藏模拟及地下水污染等重要工程领域应用的研究取得了重大的进展,在模拟油藏生成发展过程,尤其是在不同热量和应变压力作用下的进化过程有重要意义,其数学模型是一组多层对流扩散非线性耦合系统的动边值问题,由于这些方程具有强非线性且相互耦合,标准的有限差分
代数Riccati方程是一类特殊的矩阵方程,在科学计算和工程应用中发挥了重要作用。通过对各种不同的现实问题进行建模,包括最优控制、队列模型、输运理论、与粒子束的传输有关的应用和Markov过程,都可以发现与代数Riccati方程有关。加倍算法是用来求解代数Riccati矩阵方程其及相关方程的一种先进有效的方法,主要利用矩阵和矩阵束的特定结构,以及由不变子空间或压缩子空间来得到矩阵方程的解。特征选择
有限元方法因其具有完善的数学理论及对不规则几何区域较强的适应性等特点,被广泛应用于科学与工程计算领域。虽然对有限元方法已经有大量的研究工作,但仍有一些问题值得进一步探讨。标准有限元先验误差估计只给出了网格尺寸与有限元误差之间的渐近关系,但没有体现网格质量(如单元形状和大小、网格对称性)对有限元解逼近精度的影响。本文借助单元分析,构造了两个可计算量Ge和Gv来刻画网格质量和有限元误差之间的关系,从而