论文部分内容阅读
金刚石是一种极其重要的地球矿物,不仅是由于其本身具有的重要价值,同时还由于它内部的包裹体会携带来自地幔深处的矿物学信息。天然金刚石及其内部的包裹体提供了不同地球深度地幔化学和矿物学以及深层结晶过程的关键信息,通过这些信息可以确定压力,温度和金刚石生长年龄等参数。同时,由于金刚石本身具有的特性,它可以将一些矿物的高压相保存下来,而这些高压相在常压下是不能稳定存在的,这对于研究人员探究不同地球深度中不同矿物的相具有重要的意义。尽管如此,在金刚石是如何形成的关键问题上仍未得到广泛认可的答案。研究天然金刚石及其矿物包裹体之间的关系,对于解释天然金刚石的结晶过程至关重要。由于地幔对流、碳循环、板块俯冲等一系列的地质活动,地球内部不同区域的元素比例是复杂多变的。天然金刚石生长环境中的每种元素、物质对于它的成核以及生长都具有特别的意义。由于无法采集到天然金刚石的生长环境中的物质成分,因此研究人员依据金刚石内部的包裹体建立了不同的生长模型。研究人员探究了不同合成体系中硫、氧元素对于金刚石特性以及金刚石生长条件的影响,包括Fe-Ni-C-S体系、C-H-O-N体系、Fe-Ni-C-O体系、FeS-C体系、MgCO3-SiO2-Al2O2-FeS体系等。但是,以FeS、Fe_3O_4为添加剂合成大尺寸金刚石单晶并没有得到充分的重视。FeS、Fe_3O_4是天然金刚石内部常见的硫化物、氧化物包裹体,而且它们在天然金刚石生长过程中的作用至今仍未得到有效的解释。以FeS、Fe_3O_4为添加剂在类似天然金刚石生长环境中合成金刚石大单晶,对于我们探究天然金刚石的成因具有极其重要的作用。同时,压力也是天然金刚石生长必备的条件之一,探究压力对于金刚石特性的影响,对于我们探究天然金刚石的成因也具有重要的研究价值。本文以国产六面顶液压机(SPD-6×1200)作为高压设备,提供合成金刚石所需的压力以及温度,使用温度梯度法,在Fe/Ni-C体系中以FeS、Fe_3O_4为添加剂成功合成出硫掺杂以及氧掺杂金刚石单晶。因为FeS、Fe_3O_4都是地球中存在的天然矿物,以它们为掺杂剂不会在合成体系中引入其它元素。通过光学显微镜(OM)观察金刚石的表面形貌,利用拉曼光谱(Raman)表征金刚石的晶体质量,使用傅里叶红外吸收光谱(FTIR)检测金刚石内部的氮含量,通过光电子能谱(XPS)研究杂质元素在金刚石中的成键形式以及含量,利用X光衍射仪(XRD)检测高温高压实验后的碳源、金属溶剂以及合成晶体的特性。主要研究内容及成果如下:1、在Fe/Ni-C体系中以FeS为掺杂物成功合成出含硫金刚石单晶。晶体的扫描电镜显示,晶体的{100}面要比{111}粗糙,这种现象和晶体不同晶面的悬键数量有关。利用mapping对晶体表面的残留物进行检测,检测结果显示这是硫铁、硫镍化合物。FeS会在合成体系中分解,分解产物是Fe和S2。晶体的XPS光谱表明,硫成功地以C-S-O和C-S-SO2-C两种成键方式掺入到金刚石晶格中,而且峰强较强。红外光谱显示随着掺杂比例的提高晶体中的N含量逐渐增多。拉曼光谱分析表明,硫掺杂Ⅰb型金刚石单晶即使掺杂浓度较高时依旧具有高质量的sp3结构,而且随着掺杂比例的提高晶体的半峰宽逐渐变宽。2、在Fe/Ni-C体系中以Fe_3O_4为掺杂物成功合成出含氧金刚石单晶。OM显示,随着掺杂比例的提高晶体生长速度减慢而且会出现裂晶现象。XPS光谱表明,高浓度掺杂条件下氧成功地以C=O、C-O成键方式进入到金刚石晶格中。红外光谱显示随着掺杂比例的提高晶体中的氮含量逐渐增高,同等掺杂条件下提高压力会降低晶体中的氮含量。拉曼光谱分析表明,Fe_3O_4掺杂Ⅰb型金刚石单晶具有高质量的sp3结构,而且随着掺杂比例的提高晶体的半峰宽逐渐变宽,在高掺杂比例下拉曼峰位出现红移现象。拉曼光谱显示同等掺杂浓度条件下提高压力有利于提高晶体的结晶度。当Fe_3O_4添加在触媒中时,对含有包裹体的金刚石进行XRD检测发现其被还原成FeO。3、在Fe/Ni-C体系中以FeS为掺杂物研究金刚石裂晶的原因。利用OM、SEM、XPS、FTIR、Raman对晶体进行表征。晶体的OM显示,随着掺杂比例的提高晶体会出现裂晶,提高压力有利于缓解裂晶现象。晶体的XPS光谱表明,高浓度掺杂条件下硫成功地以C-SO2-C6H5、C-S-SO2-C和C-S三种成键方式进入到金刚石晶格中。红外光谱显示随着掺杂比例的提高晶体中的N含量呈现降低趋势。拉曼光谱分析表明,多硫掺杂Ⅰb型金刚石单晶具有高质量的sp3结构,而且随着掺杂比例的提高晶体的半峰宽逐渐变宽,拉曼峰位出现红移现象。拉曼光谱显示同等掺杂浓度条件下提高压力有利于提高晶体的结晶度。4、在Fe/Ni-C-N体系以及在Fe/Ni-C体系中,改变合成压力来探究其对金刚石内部氮含量以及氮的存在形式的影响。FTIR光谱以及XPS光谱结果表明在氮掺杂体系中提高压力会导致金刚石内部氮含量的降低。压力的提高会导致氮掺杂金刚石中A心氮的占比升高,这对于探究天然Ⅰa金刚石的形成具有重要的作用。Raman光谱以及XRD光谱分析表明,Ⅰb型金刚石单晶具有高质量的sp3结构。在掺氮体系中提高压力,合成晶体的拉曼峰位会向右偏移,同时晶体的拉曼FWHM会减小。