论文部分内容阅读
在大数据时代,各种信息爆发增长。在数据过载的情境下,用户想要迅速找到自己所需的信息变得困难,而推荐系统则可以很好地解决这一问题。推荐系统根据用户的行为,提供个性化推荐。推荐系统被大量地应用于各大网站中,具有巨大的商业价值;推荐系统与大数据、人工智能等紧密相连,具有学术研究价值。由此可见,对推荐系统的进一步研究很有意义。然而,推荐系统存在着数据稀疏性、系统可拓展性等关键性问题,同时推荐的准确率也有待提高。这些问题都制约着推荐系统的发展,因此为了缓解上述问题,展开了以下的研究工作:(1)针对传统的协同过滤推荐算法存在着数据稀疏性、邻居数据过少导致算法精度剧烈下降的问题,提出了融合潜在分类关联度的隐语义模型推荐算法。改进算法是将隐语义模型和基于物品的协同过滤推荐算法进行融合。改进算法的创新之处在于利用潜在分类关联度计算物品之间的相似性,并将时间上下文信息纳入到预测评分。最后在公开的数据集上进行了实验分析。(2)针对高维评分矩阵占用巨大计算资源、系统可扩展性较差的问题,提出了融合高斯混合聚类的隐语义模型推荐算法。改进算法是将隐语义模型算法和高斯混合模型进行融合。改进算法的创新之处在于,在推荐之前利用高斯混合聚类对评分数据进行预处理,划分为若干个规模更小的子矩阵,从而降低了数据计算的复杂度,并且考虑了隐式反馈对用户决策的影响。最后在公开的数据集上进行了实验分析。(3)在重庆慧居智能电子有限公司的智慧社区数据平台下进行了算法测试分析。测试结果表明,融合潜在分类关联度的隐语义模型推荐算法的最佳准确率、召回率、F1指标分别为43.6%、42.8%、40.2%;融合高斯混合聚类的隐语义模型推荐算法的最佳准确率、召回率、F1指标分别为46.6%、45.8%、41.6%,且算法的内存占用下降了24.97%。两种改进算法均能有效地缓解推荐系统存在的问题,并且提高了推荐的准确率。