Multi Attention U-net Based Defects Inspection in Polycrystalline Solar Cell Electroluminescence Ima

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:moshi122
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
During Photovoltaic solar cells manufacturing,visual defects inspection is carried out to guarantee the product quality and life span of solar cells.Solar cell surface defects can be classified into cracks,cell breakages,finger interruptions etc.The presence of these defects decreases the efficiency and permeance of solar cells and sometimes may leave the solar cells fail to work.Therefore,timely detection of these defects is important to increase the durability and performance of solar cells.Industries often use manual defects inspection systems which are undoubtedly incompetent to detect defects efficiently and are quite expensive.However,due to the current advances in computer vision field,manual defect inspection can be substituted by automatic visual inspection methods.Although,the computer vision methods have made a great progress,the defects inspection in poly crystalline solar cells is still a challenging task because of the presence of random background patterns which are similar to defects.The unbalanced defect pixels distribution also makes the inspection critical.Furthermore,current methods are slow,inaccurate,inefficient and does not meet the industrial requirement.To detect the presence of cracks and finger interruption defects in solar cell images,a fast and highly efficient method is required to inspect cracks accurately.Thus,this thesis proposes a powerful yet effective method based on deep learning that can segment and detect subtle defects in solar cell electroluminescence images.The main contributions of this thesis are as follows,1)A novel end to end deep learning-based architecture is proposed for defects segmentation in poly crystalline solar cell electroluminescence images(EL).In the proposed architecture we introduce a novel global attention to extract rich context information.Further,we modified the U-net by adding dilated convolution at both encoder and decoder side with skip connections from early layers to later layers at encoder side.Then the proposed global attention is incorporated into the modified U-net.The model is trained and tested on Photovoltaic electroluminescence 512x512 images dataset and the results are recorded using mean Intersection over union(IOU).In experiments,we reported the results and made comparison between the proposed model and other state of the art methods.We demonstrate that the proposed method can segment various cracks robustly with smaller dataset and is computationally efficient.2)A new accurate defect detection method for photovoltaic electroluminescence(EL)images is proposed.The proposed algorithm leverages the advantage of multi attention network to efficiently extract the most important features and neglect the nonessential features during training.Firstly,we designed a channel attention to exploit contextual representations and spatial attention to effectively suppress background noise.Secondly,we incorporate both attention networks into modified U-net architecture and named it multi attention U-net(MAU-net)to extract effective multiscale features for defects inspection.Finally,we propose a hybrid loss which combines focal loss and dice loss aiming to solve two problems:a)overcome the class imbalance problem,and b)allowing the network to train with irregular image labels for some complex defects.The proposed multi attention U-net is evaluated on real photovoltaic EL images datasets using 5-fold cross validation technique.Experimental results demonstrate that the proposed network can segment and detect various complex defects correctly and can be adopted for real time industrial environment.
其他文献
近年来,很多学者已经提出了一些半监督社区发现方法,这些方法通过将潜在有用的先验信息(尤其通过主动学习方法获取的先验信息)与网络拓扑结构相融合从而提高社区发现的性能和精度。但是这些方法在融合的准确率和高效性方面存在较大的不足,基于此,本文对半监督社区发现方法进行改进,改进的创新点主要包括以下两方面:(1)针对已有半监督社区发现方法准确率低的缺陷,本文提出了基于约束矩阵的半监督社区发现算法MCSNMF
伴随着互联网行业的迅速崛起,当下社会正在实现从信息时代到大数据时代的转变。作为集成大量学生校园行为数据的校园一卡通系统,在高校信息化的发展中已经得到了广泛应用,给学生带来了极大便利,也积累了海量的学生校园行为流水数据。学生学习成绩作为衡量学校教学质量的一个重要指标,对于学生的成长发展和教师检验教学成果均十分重要。挖掘隐藏在校园一卡通数据背后的信息,分析学生行为与成绩之间存在的潜在规律,成为高校和研
鲁迅在《且介亭杂文二集·“题未定”草七》中说:“我总以为倘要论文,最好是顾及全篇,并且顾及作者的全人,以及他所处的社会状态,这才较为确凿。要不然,是很容易近乎说梦的。”作者创作这两篇散文的社会状态分别是这样的:《记念刘和珍君》写于1926年,正值全国革命高潮的到来,
期刊
近年来,我国持续推动绿色发展,不断促进经济发展与生态文明建设的统一,提出了诸多重要部署以打好生态环境治理攻坚战,这要求我国充分发挥制度优势,在构建污染防治行政机制的同时,也要重视生态产品价值实现机制的创新构建,促进生态补偿制度的多元化与市场化,从而让生态产品投资行为获得足够回报,深刻践行“两山”理念。本文将结合《生态产品价值实现:路径、机制与模式》一书,简述生态产品价值实现的理论基础,同时探
期刊
基于捷联惯导原理的MEMS惯性导航定位技术日益受到重视,由于MEMS陀螺仪精度的限制和捷联惯导的积分解算方式,使得载体姿态估计的误差不断累积,难以实现长时间的精准定位。本文针对室内惯性定位的应用场景,研究采用单目视觉校正惯性姿态估计误差的方法。论文主要工作如下:(1)视觉绝对姿态辅助惯性定姿算法。通过视觉系统获取室内特征参照物的图像,结合已知的参照物姿态,利用透视投影原理,获得当前时刻基于视觉信息
近年来,随着我国经济建设和社会生产力的快速发展,空气污染已经成为大众和政府特别关注的重要话题。利用日趋成熟的数据挖掘手段,通过关联性理论方法,从空气质量数据中挖掘有价值的隐藏信息,通过分析,得到隐含在海量数据中的关联规则,对空气环境治理决策的制定具有重要意义。基于频繁模式增长(FP-growth)算法思想提出的关联规则算法,存在建树过程复杂,计算支持度繁琐的问题,导致挖掘效率较低。为此,论文提出了
皇冠梨在出口海外市场的过程中,会产生内部腐败变质而外观无明显变化的现象,从而导致商品会被全部拒收,造成巨大的经济损失。另外,在其品质检测过程中一直使用有损检测技术的感官评定方法,该方法一方面检测样本较少,覆盖面较小;另一方面其结果可靠性差、可重复性差。因此,本文特提出一种新型的无损检测技术,分别建立基于电子鼻嗅觉特征和视觉图像特征的皇冠梨分类模型,并将基于电子鼻技术和机器视觉技术的融合技术应用于皇
因果关系反映了事情之间先后相继、由因及果的发展关系。专利文本中的因果关系体现了专利的技术核心,有助于精准挖掘专利信息,也有助于专利知识图谱的构建。虽然因果关系抽取是自然语言处理领域一个经典的研究方向,但针对专利语料方面的研究较少。目前用于因果关系抽取的方法中,存在隐式因果关系抽取困难,边界识别模糊的问题。针对这些问题深入研究,主要工作包括:(1)构建专利因果指示词表。针对隐式因果关系抽取困难问题,
空间分析一直以来都是研究的热点课题,课题研究人员针对空间分析研究过程中遇到的各种问题提出了大量的解决方法。空间数据通常包含位置信息以及感兴趣的属性信息,空间数据分析是对空间数据提取或创建一组关于地理特征的新信息以对地理区域中的数据进行常规检查、评估、分析或建模的过程。对空间数据建立空间分析模型,有助于增强空间数据的估计和预测能力,提高数据的解释性和理解性。本文研究了栅格数据回归模型、地理统计数据回