透明形状记忆PI电极的制备及其在OLED器件上的应用研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:z57989503
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
与传统光电子器件相比,柔性电子器件具有超薄透明、轻质便携、柔性可弯曲等优点。随着柔性电子技术的发展,人们致力于开发多样化、多功能性的柔性器件。将形状记忆聚合物(SMPs)与柔性电子技术相结合,能够丰富柔性电子器件的多功能性,同时也拓宽了形状记忆聚合物的应用领域。本文首先研究了一种兼具高透光性、高耐热性的形状记忆聚酰亚胺薄膜材料(TSMPI),然后以TSMPI作为柔性透明基板,制备了两种透明电极:嵌入式双层金属网格和单层石墨烯,在此基础上制造了具有主动变形、变刚度和形状重构特性的智能白光有机发光二极管(OLED)。首先以耐高温聚酰亚胺作为研究对象,从透光性和形状记忆效应两个角度出发,使用柔性二酐BPADA和含氟二胺TFDB单体合成TSMPI。探究了单体摩尔比和热酰亚胺化温度对TSMPI各项性能的影响,并对相关机理进行解释。单体摩尔比为0.95、最高热酰亚胺化温度为270°C得到的PI270具有较优的综合性能。PI270具有高均一性的分子量分布,其数均分子量为19.41 kg/mol,相对酰亚胺化程度为97%;在450和550 nm处的透光率分别为87%和90%,满足OLED、OPV等光电器件对基板透光率的要求;其玻璃化转变温度为234°C,初始热分解温度为520°C,耐热性能高于其他已报道的透明SMPs;拉伸强度为129 MPa,断裂延伸率为7.4%,具有较好的力学性能;形变固定率和形变回复率分别为98%和97%,具有优异的形状记忆性能。然后采用PI270作为柔性透明基板,制备了一种具有嵌入式双层金属(Au/Ag)结构的透明金属网格电极(BMG4@TSMPI)。BMG4@TSMPI的平均方块电阻值为5.2Ω/sq,在550 nm处的透光率达85%;具有超低的表面粗糙度(Ra=2.7 nm);与基底之间存在极强附着力;经过连续2000次弯折试验后,其电阻也没有发生任何变化。以BMG4@TSMPI作为柔性透明阳极,制备了智能白光OLED器件。TSMPI的形状记忆效应赋予柔性发光器件主动变形和变刚度特性,可以在“软-硬”之间切换,从而实现其可逆的形状重构功能,器件可由二维平面结构转变为复杂的三维曲面结构,且在无外力支撑下,能长期保持稳定的临时形状;重构后的临时形状在外部热刺激下能发生形状回复,转变为初始二维平面形状。另外设计了一种基于TSMPI基板和嵌入式铝网格的柔性透明电加热膜(Alm@TSMPI)。Alm@TSMPI的电加热响应时间仅为20 s,最高表面稳态温度高达235°C,其电加热性能远超已报道的柔性透明电热膜。以嵌入式铝网格构建导电相,在不破坏SMP基体光学性能的前提下,实现了Alm@TSMPI的快速电响应,其电致形状回复时间仅为13 s,回复转变温度高达230°C,在已报道的电响应SMPs复合材料中是最高的。作为一种超薄、透明的柔性电热膜,可以将Alm@TSMPI紧密黏贴到其他SMPs基体表面,理论上可以实现转变温度低于230°C的所有SMPs的电响应。以透明形状记忆苯乙烯为例,展示了作为柔性电热膜的Alm@TSMPI在其他电响应SMPs中的应用。此外,采用电化学抛光工艺对铜箔进行表面抛光预处理,大大提高了铜箔的表面平整度,其表面粗糙度Ra由143 nm降至22 nm。以抛光铜箔作为生长基底,通过CVD法制备的铜基单层石墨烯无明显缺陷D峰,拉曼光谱中的平均I2D/IG高达2.3,总体质量优于未抛光的铜箔石墨烯。使用新的石墨烯转移方法,将单层石墨烯由铜箔无损转移到TSMPI表面。该方法以目标基底代替PMMA等支撑层,避免对石墨烯造成二次污染,得到表面超清洁的石墨烯。转移后的p G@TSMPI复制了抛光铜箔的微观形貌,其表面粗糙度为18 nm,在550nm处的透光率为86%,平均方块电阻值为310±18Ω/sq。同样以p G@TSMPI作为透明阳极进行白光OLED器件的制备,依靠TSMPI基板的形状记忆效应,石墨烯基发光器件同样实现了主动变形、变刚度和可逆的形状重构功能。
其他文献
随着飞行器综合性能的不断提升,对长时、中低热流环境下的飞行器防/隔热材料性能提出了越来越高的要求,不仅要求材料具有低密度、低热导、耐高温和长时间耐烧蚀等特性,还应具备良好的电磁波吸收性能。低密度C/C复合材料(ρ<1.0g/cm3)具有优异的高温力学性能、隔热性能、抗热冲击性能以及良好的电磁波吸收性能,在飞行器热防护系统中具有广泛的应用前景。然而,C/C复合材料在高温有氧环境中极易被氧化,这在很大
铁路遗产是区域性遗产中较为特殊的一类。在我国铁路技术迅猛发展、铁路线路总长不断增长且城市化进程不断加速的今天,铁路遗产的“何去何从”引起了广泛的关注与思考。中东铁路遗产是众多铁路遗产中较具代表性的一条。它历经了百年的岁月流转,见证了东北的地区政治、经济、文化的兴衰荣辱,开启了区域近现代化的进程,是重要的历史与文化物证。尽管中东铁路仍保有基本的交通功能,但沿线的众多铁路遗产仍面临巨大的生存考验。为这
新型的过渡金属碳化物MXene导电性优异、比表面积大、表面结构调节性高,独特的赝电容式储锂行为和长循环稳定性使其成为二次离子电池研究的热点。但应用中仍然存在如下问题:MXene本身容量偏低,且在电化学循环过程中结构易堆叠或坍塌。虽然复合改性可以克服上述缺点,但存在制备工序复杂、性能提升有限、改性机制不清晰等问题。本文以最具代表性的Ti3C2为研究对象,从结构形貌、化学成分出发,并与低成本的铁基负极
类金刚石薄膜(DLC)是碳基薄膜的一种,具有摩擦系数低、硬度高、化学性质稳定等特点,因而应用非常广泛。阴极弧技术常用于制备无H类金刚石薄膜(ta-C),但沉积效率低。阴极弧诱导辉光放电技术,是制备含氢类金刚石薄膜的最适合的方法之一。目前该技术制备DLC时,易对薄膜造成金属“元素污染”,导致膜层结构和性能的削弱。针对以上问题,本文提出利用脉冲增强石墨阴极弧技术,也就是将高脉冲电流与传统直流进行耦合,
光催化技术可以将自然界中的太阳能转换为化学能,是解决能源不足和环境污染的理想技术之一,对人类社会的可持续发展具有重要意义。类石墨相氮化碳(g-C3N4)制备方法温和、稳定性高、能够对可见光响应。但是热聚合法制备的固体g-C3N4比表面积小、分散度差、缺陷密集、载流子复合快,严重抑制了其光催化活性。针对g-C3N4的这些缺点,本文尝试通过调节能带结构、提高比表面积、制备异质结的方式对其进行改性,以达
健康是影响未来经济和社会发展的重大议题,全民健身与全民健康的密切联系,使体育运动成为健康生活的基石。本文基于全民健康理念,以提升大众体育建筑的全民健康服务能力为目标,研究寒地大众体育建筑的设计策略及方法。当代寒地大众体育建筑设计研究存在严重的信息缺失,本文通过梳理寒地大众体育建筑的发展历程,明确大众体育建筑的发展阶段及数量分布。并以哈尔滨、长春、沈阳三个典型寒地城市为例,通过文献资料调查法及对比分
近年来,全球气候变化异常,极端恶劣天气增多,能源危机日益严峻。太阳能作为绿色可再生资源,取之不尽用之不竭。高效的太阳能电池既能缓解能源枯竭的威胁,又避免了传统化石燃料对全球气候环境的破坏。钙钛矿太阳能电池作为光伏领域的新兴产业,在过去发展的十年时间里,实验室研究光电转换效率发展迅速,甚至媲美硅基太阳能电池,有巨大的发展应用前景。本文主要研究优化溶液气相法制备钙钛矿薄膜的工艺,另外对阻碍钙钛矿太阳能
足式机器人的平衡控制是其走向实用化的先决条件,近年来对平衡控制问题的研究目标已从完成确定环境内的动作,过渡到如何在未知、不确定环境内获得对环境扰动具有强鲁棒性的自稳定能力。现有的平衡控制以基于动力学模型的控制器为主,虽然随着机器人本体驱动能力、响应速度等指标的提高取得了相当成功的实验结果,但仍难以从根本上解决对未知、不确定环境的适应问题。针对现有平衡控制器在设计阶段只考虑有限的扰动情况,导致对未知
非均匀环境上入侵种群的传播问题是当前的一个热点话题,不同的环境可能会产生截然不同的影响,如何从数学上来刻画环境的非均匀性对种群传播动力学的影响是一个有趣的数学难题。本文考虑一维周期格点环境,假设奇数格点对种群的生存是不利的,偶数格点是有利的。以此生态背景为前提,推导出一个非均匀环境上具阶段结构的种群模型,然后在不同情形下,研究了该模型的动力学性质。首先,当模型具有单稳定结构时,分析扩散系数对种群传