【摘 要】
:
框架关系是汉语框架网(Chinese Frame Net,CFN)中的一种重要资源,它用来描述框架与框架之间的语义关系,从语义场景角度为篇章框架语义单元之间建立关联,为篇章语义理解提供了一种框架语义特有的方式,便于计算机理解篇章语义。中文词之间的关系研究缤纷复杂且与框架关系研究存在差异,因此CFN的框架关系继承使用了Frame Net的框架关系。汉语语义丰富繁多,CFN中会存在框架间关系缺失的问题
论文部分内容阅读
框架关系是汉语框架网(Chinese Frame Net,CFN)中的一种重要资源,它用来描述框架与框架之间的语义关系,从语义场景角度为篇章框架语义单元之间建立关联,为篇章语义理解提供了一种框架语义特有的方式,便于计算机理解篇章语义。中文词之间的关系研究缤纷复杂且与框架关系研究存在差异,因此CFN的框架关系继承使用了Frame Net的框架关系。汉语语义丰富繁多,CFN中会存在框架间关系缺失的问题。本文通过对篇章构建框架关系图发现图中存在孤立框架,语言学家黄国文提出一篇文章表达的是一个语义整体,框架关系缺失阻碍了篇章句子之间建立联系,因此需要进行框架关系预测研究。本文主要研究内容如下:(1)框架和框架关系向量表示。本文首先以英文框架为参照,对所有中文框架与对应英文框架的框架关系进行对比梳理,分析并解决出现的问题,更新了汉语框架关系知识库,然后分别使用WSABIE算法、Word2vec方法、基于知识图谱的向量表示训练方法Trans E方法在CFN例句语料和框架关系三元组上训练得到框架向量表示,进而训练框架关系向量表示,用于后续实验研究,通过后续框架关系预测任务证明了训练的框架向量表示对框架关系预测有效。(2)面向篇章的框架关系预测。本文首先介绍了篇章框架关系图的构建流程,然后分别使用余弦相似度方法和以hing-loss函数为优化目标的神经网络模型进行框架关系预测,并在模型输入中将框架本身的属性信息-框架定义融入到框架向量表示中,最后对预测的框架关系进行验证,实验结果表明了融入框架定义信息的有效性。(3)本文设计和开发了汉语框架网框架关系预测系统。通过对框架、框架关系向量表示方法和框架关系预测方法进行整合,设计开发了框架关系预测系统。该系统实现了框架关系预测和人机交互功能,用户可以使用它对框架对间缺失的关系进行预测,还能对预测过程中涉及到的框架定义信息、框架元素信息以及预测的框架关系数据进行管理,规范了框架关系预测任务中涉及到的相关数据。
其他文献
近年来,自然语言处理的重心已逐步从句法处理研究转移到语义分析研究中,语义知识库的构建至关重要。汉语框架语义知识库(CFN)已具有一定的规模,但词元库的低覆盖率问题比较严重。CFN现有动词6175个,与现代汉语词典中的17788个动词相差甚远。CFN词元库主要是通过翻译Frame Net已有词元构建的,不可能包含中文所有词语,故需要不断的扩充词元完善CFN词元库。当使用CFN在大规模真实文本中进行框
推荐系统在电子商务和服务型移动终端的应用越来越广泛,使得人们的生活越来越便利。在电子商务网站或论坛中,存在大量蕴含用户对项目某些方面的相关评论,若将这些评论进行细粒度情感分析,既可作为可解释推荐系统中用户对项目评分的依据,又可给出推荐结果的解释原因,从而帮助用户更好地理解推荐结果,提升用户的满意度。因此,本文以项目评论数据为研究对象,通过分析评论中多个对象的细粒度方面项情感极性,进而基于用户在方面
近年来,深度学习在机器视觉,如目标识别与检测,自然语言处理等领域取得了巨大的成功,可以说深度学习推动了人工智能的大跨步发展,解决了很多复杂的模式识别任务。然而深度学习模型常被人称为“黑箱”,即模型学到的表示很难用人类可以理解的方式来提取和呈现,这极大的限制了深度学习的发展,特别是在自动驾驶、金融和医学等领域利用深度学习进行关键决策时,我们往往需要算法具有极大的可靠性。在视觉处理居功至伟的卷积神经网
信息技术在各个领域中的重要性日益凸显出来;而教育行业也在社会的科技化变革中取得了重大的成果。“计算机触控技术+教育”的飞速发展衍生出了大量的媒体教学产品,例如:双屏电子黑板、纳米黑板和电子白板等。在黑板推广调研中发现,在课堂中老师主要采用对学生的观察和提问与学生进行交互,必然会因个人经历的不同导致获取全体学生的学习反馈以及学习状态信息也不同,最终导致无法达到预期的教学效果。针对上述问题,在双屏电子
以森林土为生长基质和开顶生长箱(Open-Top Chambers, OTCs)的近自然法,选择亚热带造林树种大叶相思(Acacia auriculiformis)、红锥(Castanopsis hystrix)、樟树(Cinnamomum camphora)、枫香(Liquidambar formosana)、海南蒲桃(Syzygium hainanense)的一年生树苗构建实验林,探讨了土壤有
数据挖掘是从大量数据或数据库中挖掘出有价值信息的学科,已经在诸多领域得到了应用。而聚类分析作为数据挖掘中一种不可替代的挖掘技术,同样得到广泛应用,聚类分析根据相似性将样本分为不同的簇或子集,使得不同簇中的样本具有很大的差异性。近年来,核方法因其在非线性模式分析任务中的优势,被广泛用于聚类任务中,但是核聚类的性能很大程度上依赖于核函数以及参数的设置上,因此产生了多核聚类方向,近几年来,基于多核聚类的
机器阅读理解作为自然语言理解的关键任务,受到国内外学者的广泛关注。其意义在于使机器具有理解文本语义的能力。本文重点关注机器阅读理解中的多项选择题任务,即给定文章、问题和选项,要求根据文章内容回答问题,从多个选项中选择最佳选项。然而这些选项通常不是直接来自文章片段,其需要根据文章内容进行总结归纳或推理才能得出正确答案,存在更艰巨的挑战。因此,本文旨在面向高考阅读理解中的多项选择题进行研究,主要的工作
多项选择型阅读理解任务作为机器阅读理解的子任务之一,近年来受到国内外研究者的广泛关注。现有多项选择型阅读理解数据集多为英文语料,且数据集文章覆盖领域及回答问题所需推理能力单一,而高考语文中文章覆盖领域多样、问题复杂。因此,面向高考语文阅读理解的研究任务具有较大的挑战性。本文以2018年国家重点研发计划项目子课题“文本生成及复杂语言问题求解关键技术与系统”为背景,针对高考语文中现代文多项选择题展开研
目前,精神疾病的精准诊断是脑科学中最主要的研究课题。由于精神疾病(比如精神分裂症、分裂症情感障碍和双相情感障碍等)有许多重叠的临床症状,因此基于症状的主观诊断很容易导致精神疾病被误诊为其它相似的疾病从而影响疾病的治疗。利用脑影像(如脑核磁共振成像)探索精神疾病的机制和客观指标,利用数据挖掘的手段用客观影像学测度来定义精神疾病的类别是推动精神疾病精准诊断的必经之路。本论文针对这两个方面展开研究,分别
个性化推荐技术在生活中已被广泛的应用。近年来已提出的推荐算法虽然其推荐性能有了显著提升,但是模型越来越复杂,导致出现了大量的黑盒模型。然而,黑盒模型却存在可解释性差的问题,可解释性推荐是解决此问题的有效手段,其不仅可以为用户提供推荐还可以对推荐的物品做出解释,使用户了解为什么推荐此物品,增加用户的信任度和满意度,从而提高推荐系统的精准度和说服力。所以,推荐系统的可解释性问题变得尤为重要。目前,嵌入