基于IGWOSMOTE的企业信用评级系统的设计与实现

来源 :江苏大学 | 被引量 : 0次 | 上传用户:wdw_king
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
关于中小企业的信用评级手段受到越来越多评级机构的关注,评级方法也步入了新的发展阶段——基于智能算法的评级模型,但评级模型的预测准确率极易受到数据、模型参数等的影响,不利于企业信用风险评估的过程和结果。因此,对数据和模型进行准确的分析和训练,对提高信用评级模型的性能,降低评级机构对企业的授信风险来说是具有重要意义的。为了提高针对中小企业的信用评级模型的精准性和适用性,论文使用SVM(Support Vector Machine,支持向量机)算法作为本文评级模型的基学习器,并且提出一种基于IGWO(Improved Grey Wolf Optimization,改进灰狼算法)的过采样方法并将其应用到中小企业信用评估SVM模型中去,论文主要工作如下:(1)提出IGWOSMOTE算法。针对不平衡数据的冗余特征对少数类合成过程的影响以及按固定采样倍率生成少数类样本的缺陷,提出了结合改进灰狼算法对SMOTE(Synthetic Minority Oversampling Technique,少数类样本合成技术)进行优化的方法,即IGWOSMOTE算法,详细介绍了该算法的思想和流程,最后通过实验得出该算法较传统SMOTE算法在少数类分类精度上提高了6.3个百分点。(2)提出基于IGWOSMOTE算法的SVM评级模型。首先将IGWOSMOTE算法应用于不平衡企业数据集中,建立了适用于中小企业的评级指标体系以及SVM分类模型,最终将IGWOSMOTE算法应用在SVM模型优化上,提出基于IGWOSMOTE的中小企业信用评级方法,并基于真实的企业历史数据进行模型的训练和预测,与其他模型做对比实验得出该模型具有良好的使用价值。(3)完成简易中小企业信用评级系统的设计与实现。论文简化了我国商业银行内部评级系统的全授信业务流程并分析其需求,将基于IGWOSMOTE算法的SVM评级模型应用到系统中,经过系统架构设计、功能模块分析以及数据库设计,使用计算机技术研发了简易中小企业信用评级系统为评级机构提供参考。
其他文献
软件漏洞的存在对软件的质量和安全问题造成了严重的威胁,攻击者可以利用软件漏洞从而在未获得授权的情况下访问系统甚至对系统进行攻击。源代码具有丰富的语义,并且针对源代码进行静态分析已被广泛应用于软件开发过程。此外,软件开源化已逐渐成为软件开发的主流趋势,开源软件中存在的漏洞会随着开发人员复用开源代码而广泛传播。随着现有软件规模的逐渐扩大,以及漏洞出现的频率不断提升,急需开展源代码静态漏洞检测相关的研究
近年来,多目标优化问题是工业界与科学研究领域中的研究热点。多目标优化算法的目的是获得一组均匀分布在整个帕累托前沿面上的最优解。其中,基于偏好的多目标优化算法将决策者的偏好信息融入到多目标优化算法中可以缩小搜索空间、减少计算开销、获得部分解,得到了研究者的广泛关注。传统基于角度偏好多目标粒子群优化算法具有实现简单、偏好区域范围能灵活控制以及收敛性好等优点,但在处理复杂问题时,算法对优秀粒子缺乏足够的
表面等离激元(SPPs)作为现代纳米光学的重要部分,有着巨大的发展潜力。SPPs可将光场局限在亚波长尺度空间内,使得人们可以在亚波长范围内对光信号进行激发和调控,因此,SPPs在生物、化学、信息等领域具有重要的应用前景。近年来,二维材料因其等离激元具有电光可调性和低损耗的优势得到了人们的广泛关注。其中,最具代表性的材料就是石墨烯。目前,已有多种石墨烯等离激元器件,包括可调谐的石墨烯阵列滤波器、布拉
近年来,随着计算机硬件的飞速发展、更多的人脸数据集和深度神经网络的不断改进完善,基于深度学习的人脸检测算法已成为了人脸检测的主流,并在多数场合特定环境下,满足了大数据时代背景下人们对于人脸检测系统的性能、实时性、准确性以及智能性方面的需求。但是,在视频监控等领域,系统设备由于受到成像设备性能、特定环境、目标距离、光照天气等因素影响,无法提供高清图像进行后续的人脸检测分析,而当前人脸检测算法在低分辨
开绕组永磁同步电机(Open Winding Permanent Magnet Synchronous Motor,OW-PMSM)拥有传统PMSM结构简单、功率密度高和运行效率高的优点,在农业植保机、电动拖拉机、农业机器人等高端农业装备领域具有很好的应用前景。其中,共母线OW-PMSM在高母线电压利用率的前提下仅需单个直流电源供电,极其适用于高压大功率电驱系统。本文针对共母线OW-PMSM驱动系
近年来,智能网联汽车(Intelligent Connected Vehicle,ICV)在互联网技术的推动下,其智能化水平得到了极大提升,但也暴露了车内网络安全问题。ICV具有较多的车内远程接口以及对外通信功能,这使得攻击者可以通过该接口并利用车内网安全漏洞实现对车辆的控制。目前,针对由远程攻击造成的车内网络安全问题,国内外专家学者已经提出了诸多防护机制,如身份认证、数据加密和密钥更新等技术,这
随着社会的不断发展与进步,视频数据的急剧增长,视频中的行为识别与分析逐渐成为我们研究的热点。基于RGB视频或光流的行为识别方法易受背景、光照和外观变化的影响,越来越多的研究者将视频序列转换为骨架序列进行研究。现有的基于骨架的研究大多是对单人骨架进行分析,而对于理解具有多人之间关系的复杂人类活动的问题还没有得到充分的解决。同时,在对行为进行分类后,理解视频中动作的本质也是我们需要思考的问题。为了进一
低秩表示在发现高维数据以及存在噪声的数据的内在结构方面有着强大的能力。因此,在计算机视觉和机器学习等实际应用中起着十分重要的作用。然而,传统的低秩表示模型无法有效地检测出噪声并抑制噪声数据的影响。尤其是在强噪声的环境下,其性能下降得更为明显。为解决上述问题,本文提出了一种基于特征与样本缩放的低秩表示技术并在双线性因子分解模型上做了拓展,提升了模型对不同噪声处理的鲁棒性,加快了模型计算速度,并对存在
水果和蔬菜富含微量营养素和抗氧化剂等营养成分,是我们日常饮食中不可缺少的一部分。随着人们生活节奏的加快,鲜切果蔬的需求量不断扩大。但是,由于鲜切果蔬加工后暴露的外表面富含营养物质适合微生物繁殖,因此,由微生物污染鲜切果蔬导致的食源性疾病病例也随之增加。传统的杀菌方法大多存在有毒物质残留、破坏食物营养成分等缺点。光动力杀菌是一种安全高效的冷杀菌方法,能够有效克服传统杀菌方法的缺点。但传统光敏剂卟啉分
物联网(Internet of Things,IoT)技术在近几年得到蓬勃发展,数以亿计的设备产生海量数据。网络架构是支撑物联网运行的基础,面对物联网灵活的应用场景,传统TCP/IP架构因其面向主机连接的特性,在地址分配和动态寻址等方面已表现出各种固有的不足。针对这些问题,命名数据网络(Named Data Networking,NDN)提出以内容为中心的网络架构,可以无需地址主动发起数据收集,展