论文部分内容阅读
空间分辨率是衡量图像质量的一个重要标准,图像的分辨率越高就越能提供更多原始场景的细节。鉴于光学器件的物理局限性和昂贵的成本价格,迫切需要探讨一种可以突破成像系统限制的新方法来提高分辨率水平,这就是计算机视觉和图像处理领域中超分辨率图像重建技术的研究目的。近年来,该技术广泛应用于医学图像、卫星成像、视频监视、以及遥感侦察等成像领域,有着非常重要的理论意义以及应用价值。本文针对多帧图像超分辨率重建关键技术进行了研究,目的是将具有同一场景的多幅模糊且有噪声的低分辨率图像(或低分辨率视频序列)之间的相关信息进行融合,最终生成一幅去模糊去噪的高分辨率图像(或高分辨率视频序列)。具体研究内容如下:(1)从静态重建角度出发,提出了一种基于高斯金字塔光流(GPOF)配准和L1范数的多帧图像超分辨率重建方法。该方法的运动估计模型采用了高斯金字塔分层结构的光流场亚像素配准思想,既加速了算法的执行同时也达到了超分辨率重建的亚像素级精度。在重建过程中,该方法在数据保真项和正则项上均基于具有鲁棒性的L1范数估计,其中双边全变差(BTV)先验模型作为正则项不仅计算代价低而且有效的保持了图像的边缘。最后利用中值"shift and add"方法,在低分辨率帧间仅有平移运动且点扩展函数模糊是平移不变的情况下,初始化目标函数优化迭代方程中的高分辨率图像的值。实验证明,本文提出的方法能够有效地消除异常值,使图像具有锐利的边缘。(2)在静态超分辨率重建的基础上,提出了一种基于卡尔曼滤波逼近的单色视频序列的动态重建方法。在平移运动与公共空间不变模糊的条件下,根据卡尔曼滤波器的循环更新方程,对于所输入的低分辨率图像视频序列给出了动态重建的递推模型和前向数据融合方法,即前向动态shift-and-add算法。该算法通过对均值-协方差数对的不断更新,以因果关系的模式生成了初始状态下的高分辨率视频序列(?)( t )。最后采用最大后验概率估计和双边全变差先验模型相结合的理论,对所得到的初始高分辨率视频序列进行去模糊和插值操作,从而获得最终的高分辨率视频序列。实验表明,整个重建过程计算代价低,存储高效,能够取得较好的结果。