论文部分内容阅读
癌症是严重危害人体健康的疾病之一。与传统的光子放疗相比,质子的剂量分布呈现布拉格峰特性,使得照射患者时质子束能量能够集中在癌细胞处释放,对周围健康组织的损伤小,因而质子治疗在剂量分布上具有精准治疗的优势。为此,华中科技大学联合中国原子能科学研究院主持承担了国家十三五重点研发计划“基于超导回旋加速器的质子放疗装备研发”项目(HUST-PTF)。
在HUST-PTF的运行过程中,质子束流可能在回旋加速器、能量选择系统、束流传输线、治疗室等位置产生束流损失,此时质子与靶材料中的核子发生碰撞,在核内级联、核退激等过程中产生以中子、γ为主的次级粒子。其中级联中子可穿透工作场所的屏蔽墙并与屏蔽材料发生弹性散射、非弹性散射,同时进一步产生核反应,最终在工作场所中形成中子与γ射线的混合辐射场。过量中子辐射剂量的照射会诱发人体的各类疾病,也会活化加速器设备,对设备造成损坏。为此需要对工作场所的各区域进行中子探测,同时建立完善的中子监测系统,以保障工作场所内部设备及人员的安全。
中子显电中性,难以直接对其测量。目前使用较多的中子探测器利用了核反应法,通过对次级粒子的测量间接获得中子剂量。根据HUST-PTF的束损情况和辐射场分析,HUST-PTF工作场所的辐射场具有中子能谱宽、中子剂量低的特点,选购的商业中子探测器不能满足所有区域的探测需求。为此通过MCNP5和FLUKA软件的模拟仿真对原有探测器模型进行结构参数的改进,从能量响应、灵敏度两方面进行了优化。优化设计后的中子探测器可以满足0.025eV~250MeV能量范围内的探测需求,在实际中子能谱下的剂量当量灵敏度可达到43.5(计数/s)/(μSv?h-1)。
根据中子探测器的监测点布局,论文提出了中子监测系统的整体架构,并对其中的数据采集系统和上位机系统的设计分别进行了详述。论文自主设计了基于FPGA的数据采集系统,该系统包含前级数据处理电路、数据采集单元以及电源供电系统,采用FPGA和嵌入式软核的软件设计方式,提高了系统的可靠性,同时对中子漏计数问题进行了补偿。上位机系统采用LabVIEW软件搭建系统界面,可满足对各监测点的中子剂量监测需求。论文同时设计了数据动态发布查询系统,采用EasyUI框架和JSP语言进行网页搭建,可满足远程监测及历史剂量数据查询的需求。
中子监测系统的各部分均已完成测试,测试结果满足中子监测的功能需求,可稳定运行。
在HUST-PTF的运行过程中,质子束流可能在回旋加速器、能量选择系统、束流传输线、治疗室等位置产生束流损失,此时质子与靶材料中的核子发生碰撞,在核内级联、核退激等过程中产生以中子、γ为主的次级粒子。其中级联中子可穿透工作场所的屏蔽墙并与屏蔽材料发生弹性散射、非弹性散射,同时进一步产生核反应,最终在工作场所中形成中子与γ射线的混合辐射场。过量中子辐射剂量的照射会诱发人体的各类疾病,也会活化加速器设备,对设备造成损坏。为此需要对工作场所的各区域进行中子探测,同时建立完善的中子监测系统,以保障工作场所内部设备及人员的安全。
中子显电中性,难以直接对其测量。目前使用较多的中子探测器利用了核反应法,通过对次级粒子的测量间接获得中子剂量。根据HUST-PTF的束损情况和辐射场分析,HUST-PTF工作场所的辐射场具有中子能谱宽、中子剂量低的特点,选购的商业中子探测器不能满足所有区域的探测需求。为此通过MCNP5和FLUKA软件的模拟仿真对原有探测器模型进行结构参数的改进,从能量响应、灵敏度两方面进行了优化。优化设计后的中子探测器可以满足0.025eV~250MeV能量范围内的探测需求,在实际中子能谱下的剂量当量灵敏度可达到43.5(计数/s)/(μSv?h-1)。
根据中子探测器的监测点布局,论文提出了中子监测系统的整体架构,并对其中的数据采集系统和上位机系统的设计分别进行了详述。论文自主设计了基于FPGA的数据采集系统,该系统包含前级数据处理电路、数据采集单元以及电源供电系统,采用FPGA和嵌入式软核的软件设计方式,提高了系统的可靠性,同时对中子漏计数问题进行了补偿。上位机系统采用LabVIEW软件搭建系统界面,可满足对各监测点的中子剂量监测需求。论文同时设计了数据动态发布查询系统,采用EasyUI框架和JSP语言进行网页搭建,可满足远程监测及历史剂量数据查询的需求。
中子监测系统的各部分均已完成测试,测试结果满足中子监测的功能需求,可稳定运行。