论文部分内容阅读
智能船舶在解决节能减排和船舶安全性等方面具有重要意义。国际海事组织已将海上水面自主船(MASS)纳入其工作计划并积极推进。复杂水域的船舶自动避碰及路径规划是智能船舶或MASS研究的重点和难点之一。目前研究存在的问题包括:不考虑《国际海上避碰规则》(简称《规则》)、假设他船保向保速或均按照《规则》而采取行动、不适用于动态他船和静态障碍物共存的环境、不能应对他船的不协调避碰、不能满足实时性要求、不适用于长航线自主航行、环境地图精度不高或未采用电子海图平台等。鉴于此,论文做了以下重点工作:(1)提出一种受《规则》和船舶运动特性约束的,基于改进势场法的开阔水域多船实时自动避碰决策算法。在融合了船舶领域和《规则》核心条款的碰撞危险判据基础之上,提出了船舶自动避碰领域斥力势场分区概念,并为各分区设计了相应的势场函数及适用条件。在路径规划方面,构建了适用于动态目标追踪和静态目标引导的全局引力势场。两者结合从而确定了考虑《规则》避碰和路径引导的斥力及引力计算模型。最后依据航海实践、船舶运动特性、分区斥力和引力的合力,设计了可同时避碰动态他船(包括其不协调避碰行动)和孤立静态障碍物的实时自动避碰算法,并通过Matlab仿真,验证了算法的有效性。(2)提出一种基于电子海图的点、线、面矢量数据及其特征属性的环境势场地图构建及其参数设置方法。针对栅格化环境地图建模精度不高、难以区分不同种类障碍的问题,提出一种精确的、可方便控制障碍物影响范围的可视化势场环境地图构建方法。该方法可建立具有不规则形状的静态障碍物(如隐式函数曲线、凸多边形甚至凹多边形)的环境势场,并可根据不同的障碍物属性做便捷的参数调整,以控制我船与之保持的安全距离。该方法提高了环境地图的建模精度,易与多船避碰算法结合,奠定了基于电子海图的多船自动避碰决策算法的基础。(3)提出一种适合于狭窄水域多船自动避碰,基于先验路径引导的混合人工势场(PGHAPF)法。该方法将狭窄水域的静态势场(不规则障碍物)和动态势场(他船和目标)分开建模,赋予静态势场较高的优先级。首先,通过探测我船前方静态障碍物的高势场值危险,确定附近势场最小值的方向,使我船提前采取避障行动并与之保持安全距离;然后,采用动态势场求梯度的方法,获得受《规则》约束的多船避碰转向决策。该方法同时融合了离线先验路径、转向点选择策略和船舶运动数学模型。通过Matlab仿真验证,算法避免了传统人工势场法存在的局部最小、目标不可达等问题,实现了狭窄水域离线规划与在线规划的统一,实时避碰多动态他船和不规则静态障碍物的统一,决策与执行的结合与统一,便于推广到实船电子海图系统应用。(4)建立了基于PGHAPF的多本船决策模块及其动态链接库,嵌入“全任务船舶操纵模拟器测试平台”进行了仿真测试。实现了基于电子海图的受《规则》约束的多船实时自动避碰及路径规划,也实现了狭窄水域多障碍环境下,多艘自主船之间、自主船与非自主船之间的协调和非协调的避碰和避障。通过大量的模拟试验,验证了算法可通过简单的参数调整即可满足对多种尺度、多样化船型的适应性,并检验了在受到水文气象等外界条件干扰下,算法所具有的鲁棒性。论文提出的方法克服了现有研究的一些局限,为多船自动避碰算法的实船测试及应用奠定了一定基础。