论文部分内容阅读
硅硼碳氮(SiBCN)陶瓷是由聚硼硅氮烷(PBSZ)前驱体经交联热解制得的一种超高温陶瓷,可应用于航空航天、高温防护等领域。碳纳米管增韧SiBCN陶瓷改善了陶瓷热解收缩造成的开裂现象,但由于碳纳米管间范德华力作用较大导致其在陶瓷基体中容易团聚,影响了碳管对陶瓷基体的增韧效果。本论文以三维网络结构的碳纳米管气凝胶作为增韧预制体,制备出碳管含量高且分布均匀的CNTs/SiBCN复合材料,研究了复合材料中碳管的分布、界面结合及其对陶瓷基体的增韧机制。同时,本论文设计将低浓度的PBSZ前驱体溶液与碳纳米管复合,经热解制得SiBCN包覆CNTs复合材料,研究了其微观结构及复合材料抗氧化性能。采用真空浸渍法将PBSZ与碳纳米管气凝胶复合,通过改变碳管的填充密度控制复合体中碳管的含量,经交联热解制备出碳管含量分别为10 wt.%和20 wt.%的CNTs/SiBCN复合材料。三维骨架搭接的碳纳米管气凝胶结构对复合材料具有支撑作用,可有效抑制基体的热解收缩,使得热解后复合材料线收缩(19%)相较纯SiBCN陶瓷(29%)减小了34%;同时避免了碳纳米管在基体中的团聚,使得复合材料中碳纳米管呈高含量(面含量达19%)离散分布,与陶瓷基体结合紧密。扫描电镜观察到复合材料中纳米级的碳管对陶瓷基体起到了微米级纤维的增韧行为,包括桥连裂纹、裂纹偏转,甚至裂纹中止等,这与复合材料中高密度均匀分布的碳管有关,保证了载荷的有效传递。与微米级纤维的拔出增韧机制不同,这种复合材料的断裂面上有大量被拉长而断裂的碳管束,且管束的长度随碳管密度的增加而增长,表明纳米级的碳管的主要断裂方式是管束内的滑移而断裂,通过克服碳管间范德华力而消耗能量。这种结构的碳管增强陶瓷复合材料的断裂过程历经了陶瓷体断裂、管束滑移与桥联、界面滑移、碳纳米管断裂四个过程。采用真空浸渍法将碳纳米管气凝胶和PBSZ复合并热解,通过控制PBSZ溶液的浓度制备出不同包覆厚度(10 nm和20 nm)的SiBCN@CNTs复合材料。研究表明,当包覆层较薄(10 nm)时,复合材料能够基本保持碳管气凝胶原有的微观多孔结构;而且陶瓷包覆层能有效抑制碳管在空气的氧化问题,热重分析SiBCN@CNTs复合材料在1000°C空气气氛中失重为9.09 wt.%,比纯碳管的71.6wt.%,减少了87.3%。