论文部分内容阅读
伴随着互联网技术的不断发展,电子商务也取得了巨大的发展。人们在享受电子商务带来便捷的同时,也不得不面对电子商务站点上的商品不断增加,要找到自己所需商品越来越困难。另外,对于企业来说,他们要想在电子商务中取得优势,就必须更好的掌握顾客的特点以及市场的发展趋势。这些信息都可以根据历来顾客在网站服务器上留下的日志文件分析得到。但是浏览者的每一次鼠标点击都会在日志文件中留下一条记录,一个较大型的电子商务网站每天至少要产生上百万条记录。面对如此庞大的数据量,使用人工的方法根本不可能从中得到任何信息!为了更好的利用这些数据,我们使用了Web数据挖掘技术进行处理,通过对用户使用模式的发掘,我们可以得到用户的访问模式,利用聚类技术对访问者进行聚簇,然后根据簇内用户的点击习惯,选择簇内用户购买率较高的商品推荐给簇内其他用户;另外,利用Apriori算法在簇内的事务数据库中寻找关联规则,根据用户当前的购物行为预测其购买趋势,主动进行推荐,以提高用户在站点多次购物的机率。论文从数据挖掘开始入手,讨论了数据挖掘技术的研究背景、意义以及国内外发展现状,然后针对电子商务的具体情况,具体研究了挖掘技术在电子商务中的应用。课题研究过程中,主要研究了关联规则在数据挖掘中的意义以及经典的关联规则算法Apriori算法的研究与实现;在Web数据挖掘中常用的技术和分析方法;以及基于浏览行为的电子商务推荐系统的架构与内部算法的实现,和实际应用中的意义。通过Web使用挖掘得到的知识模式,我们使用电子商务推荐系统为顾客提供个性化的推荐服务,能够提高顾客对网站的归属感和满意度,同时可以增加站点的竞争力;企业通过在电子商务站点上挖掘到的信息,可以更好的掌握市场动态,为企业更好的做出决策提供建设性的指导意见,具有很强的实用性。