论文部分内容阅读
工业的迅猛发展以及人们对生活质量的要求越来越高,恶臭污染(尤其含硫恶臭气体嗅阈值低、毒性大)治理日益受到重视。脉冲电晕低温等离子体技术具有工艺流程简单、效率高和适用范围广等优点在治理含硫恶臭气体方面已成为研究的热点之一。本文研究了反应器串、并联模式以及活性炭纤维吸附协同脉冲电晕降解硫化氢的过程。采用脉冲电晕在介质阻挡(DBD)反应器对乙硫醇和甲硫醚降解及副产物产生进行了研究,对降解机理和反应动力学进行了探讨。论文取得了以下主要结论:1.采用反应器串联和并联模式相对于单一反应器模式,在相同的充电电压下,其放电特性为峰值电压降低、脉冲上升前沿变缓、脉冲宽度增加。在充电电压小于9kV,串联模式和并联模式反应器阻抗比由4.5降低到2.9,电源的能量效率提高约10%。在充电电压分别为13kV和14kV时,串、并联模式H2S去除率接近100%,而单一模式则只达到88%和91%。处理进口浓度为200mg/m3的H2S,串、并联模式及单一模式能量消耗指标分别,为43J/L、51J/L、68J/L,且串联模式与并联模式产生的O3浓度有所降低。2.采用脉冲电晕-活性炭纤维协同降解硫化氢,在相同充电电压下,复合系统中H2S的去除率比单一脉冲电晕反应器有很大提高,复合系统的能耗(EC值,降解1分子污染物所需能量)比单一脉冲电晕有所降低,而能量利用率(EY值)有所提高。相对于单一活性炭纤维,在脉冲电晕作用下,ACF对硫化氢的穿透时间最大延长16倍;ACF对硫化氢的降解吸附容量在6kV时提高4.2倍,对O3的吸附分解容量也提高1.6倍;活性炭纤维能够控制脉冲电晕反应器中生成的副产物如SO2、O3和NOx。3.脉冲电晕-活性炭纤维协同体系在充电电压为6kV时H2S的去除率比单一脉冲电晕时提高15%,并且H2S的去除率达到88%时,与单一脉冲电晕在7kV时硫化氢的降解率相当,能耗指标EC值减少21eV/molecules,EY值提高1.7mg/kJ;组合系统比单一脉冲电晕能耗节省26.5%。4.脉冲电晕在DBD反应器中,重复频率、峰值电压提高,甲硫醚(CH3SCH3)和乙硫醇(C2H5SH)的去除率增大,在适当条件下最终其去除率都能接近100%,但能量利用率在重复频率100pps时最大,分别达到0.338mg/kJ和0.223mg/kJ。增大污染物初始浓度和气体流量,在相同的峰值电压下CH3SCH3和C2H5SH的去除率都有所降低,但绝对去除量和EY却增大。气体湿度对CH3SCH3的去除率有重大影响,增大湿度CH3SCH3去除率提高很大,在相对湿度超过30%时,峰值电压达到起晕电压时CH3SCH3基本得到去除,能量利用率可达到2.87mg/kJ。O2含量为5%时,在相同的峰值电压下CH3SCH3的去除率最高,能量利用率EY值最大,在27.3kV时达到0.295mg/kJ。增大或者减小O2含量,能量利用率都降低。5.CH3SCH3的初始浓度增大,O3、NOx的生成浓度降低;SO2的浓度随CH3SCH3的初始浓度增大而增大,但其生成SO2的选择性SB却有所降低;气体湿度为6%,14%时,对O3的生成有促进作用,对NOx的生成影响不大;提高气体湿度,SO2生成浓度增大,但SB降低。在相同峰值电压下,SO2生成浓度随O2含量的增大而增大,O2含量大,硫元素的氧化较为彻底,生成SO2的SB增大。6.通过产物分析,对CH3SCH3和C2H5SH的降解机理进行了初步推测,认为在脉冲电晕放电处理污染物时,自由基的反应是主要的中间步骤。通过对CH3SCH3降解动力学模型进行拟合,认为其降解过程符合没有自由基终止的动力学模型。