论文部分内容阅读
第二类Legendre-Stirling数是由Everitt等于2002年首次提出的,它是拉格朗日对称式中勒让德表达式的积分复合幂的系数,由于它具有与经典第二类Stirling数类似的性质,因此,也备受人们的重视.与第二类Legendre-Stirling数相对应的第一类Legendre-Stirling数是由Andrews和Littlejohn于2009年提出,之后,多位学者给出了这两类Legendre-Stirling数的许多重要结果.本文重点研究两类Legendre-Stirling数之间的关系,将第一类Legendre-Stirling数概念进行了推广,提出一类新的组合数扩展的第一类Legendre-Stirling数,并研究了其相关性质. 本文的主要工作有以下几个方面: (1)给出了第一类Legendre-Stirling数的一种矩阵表示法,并证明了其“单峰性”;应用算子法证明了第一类Legendre-Stirling数满足的递推关系,并研究了两类Legendre-Stirling数的相关性质,给出了这两者之间的关系; (2)证明了两类广义Legendre-Stirling数的单峰性质,两类Legendre-Stirling数的同余性等. (3)通过函数-n=(x(x-2)(x-6)…(x-(n-1)n))-1的Laurent展开式定义了扩展的第一类Legendre-Stirling数,扩充了第一类Legendre-Stirling数的定义域,得到了和Legendre-Stirling数类似的递推关系、高阶差分性质及与第二类Legendre-Stirling数的关系,丰富了Legendre-Stirling数的研究成果.