【摘 要】
:
度量空间在数学中有着广泛的应用,因此空间的可度量化问题是一般拓扑研究中的一个重要的问题.在这一研究过程中逐渐形成了(A)空间,(G)空间和(F)空间,这三种空间类具有很多良
论文部分内容阅读
度量空间在数学中有着广泛的应用,因此空间的可度量化问题是一般拓扑研究中的一个重要的问题.在这一研究过程中逐渐形成了(A)空间,(G)空间和(F)空间,这三种空间类具有很多良好的拓扑性质,已然成为现在拓扑学研究的一个重要领域.
本文由四章组成,主要讨论了几类具有(A)性质的空间.
第一章,引言部分对于(A)空间的发展进行了概括性的回顾.介绍了(A)空间,(G)空间和(F)空间的概念,以及(A)空间的一些性质.
第二章介绍了几类具有(A)性质的空间:降(A)空间、一致(A)空间、邻域(A)空间、弱(A)空间、降的弱(A)空间、一致弱(A)空间和邻域弱(A)空间,并主要研究了他们的一些等价刻画性质,扩充了(A)空间的关系架构.
文章的第三部分是映射保持性的讨论,主要是关于有限对一映射和伪开映射的性质:开的k对一映射和伪开的k对一映射都可以保持弱(A)性质,但是会削弱(A)性质.闭的有限对一映射保持降弱(A)性质,但会将降(A)空间映为降弱(A)空间.
最后本文还对(F)空间进行了讨论,得到了关于降α-(F)空间的一个性质.
其他文献
近些年来随着代数学理论的不断完善和发展,Hom-代数的理论研究得到了国内外学者的广泛关注.交错代数作为一类重要的非结合代数,关于Hom-交错代数的研究也成为Hom-代数的发展
人脸识别技术就是利用计算机分析人脸图像,提取有效的识别信息来辨认身份或者判别待定状态的一门技术。由于人脸图像的特殊性,人脸识别问题不仅是模式识别领域的一个难题,同
我们知道单参数李超代数Uq(osp(1,2))和双参数李超代数Ur,s(osp(1,2))均可看作是李超代数osp(1,2)的量子变形.本文主要构造了一种更一般的量子变形,记作Uq(osp(1,2,f(K,H))).其是由E,F
数据聚类是一个正在蓬勃发展的领域,涉及数据挖掘、统计学、机器学习、空间数据库技术、商务信息等领域,可以说涉及了人类社会生活的方方面面。模糊聚类分析是将模糊理论应用到聚类分析中,为显示数据提供了模糊处理能力,在许多领域被广泛应用。FCM(Fuzzy c-means)算法是模糊聚类中的一种重要方法,它具有算法简单、局部搜索能力强且收敛速度快的特点,然而FCM算法受初始化影响较大,在迭代时容易陷入局部极
设α为无理数,称实数μ是α的无理测度,若对于任意的ε>0,存在q0(ε)>0,使得对所有满足q≥q0(ε)的数组(p,q)∈Z2,我们有 |α-p/q|≥q-μ-ε 设α0,α1,…,αn为 Q上的一组
本文讨论完备Brouwer格上模糊关系方程的两个解的交仍为方程的解、n元集上传递关系的个数以及模糊矩阵的收敛问题.首先对论域为有限集时定义在完备Brouwer格上的Fuzzy关系方
形如yt=ξ+∫Ttf(s,Ys,Zs)ds-∫TtZsdBs的方程被称为倒向随机微分方程(BSDE)。
线性的倒向随机微分方程是由Bismut在1973年研究随机最优控制的最大值原理时首次引入的.199
本文主要研究有界域上带乘法扰动的一维广义Ginzburg-Landau方程解的渐近行为,证明由方程的唯一解生成的随机动力系统在L2空间中随机吸引子的存在性和上半连续性。本文我们考
虎门港是国家一类口岸,广东省重要港口之一,也是东莞市唯一的港口。说起虎门港的重要性,东莞对外出口企业深有感触,因为货物可经保税物流中心顺利封关,从而结束了东莞企业“香港一
支持向量机是近些年发展起来的一门机器学习分支,作为一种新颖而独特的机器学习方法,越来越受到重视。支持向量机作为一种强有力的学习工具,成为讨论和研究的热点,它在处理分