【摘 要】
:
本学位论文主要研究多线性分数次积分和极大算子以及带齐次核的多线性分数次积分和极大算子在几类重要空间上的有界性.主要结果如下.首先,利用了函数分解方法和A(p.q)权不等
论文部分内容阅读
本学位论文主要研究多线性分数次积分和极大算子以及带齐次核的多线性分数次积分和极大算子在几类重要空间上的有界性.主要结果如下.首先,利用了函数分解方法和A(p.q)权不等式等工具,建立了多线性分数次积分Lα和极大算子Mα以及带齐次核的多线性分数次积分LΩ,α和极大算子MΩ.α在加权Morrey空间上的有界性和弱估计.其次,通过对带齐次核的多线性分数次积分LΩ,α在Lebesgue空间上的估计,从而得到了广义局部Morrey空间上带齐次核的多线性分数次积分LΩ,α的有界性及弱估计.最后,通过对带齐次核的多线性分数次积分LΩ,αa在加权Lebesgue空间上的估计,从而得到了广义加权Morrey空间上带齐次核的多线性分数次积分LΩ,α的有界性.
其他文献
由于地球的质量分布的不规则特征造成了重力场中每个点的重力矢量与正常重力矢量之间的数量差称之为重力异常。重力异常是研究地球形状和内部结构构造以及重力勘探和修正飞行器轨道的重要数据,被广泛的应用于物理海洋学、地球物理学等领域。但由于地球表面海洋的面积远大于陆地,深水区域的重力测量比较困难,导致海洋重力资料的严重匮乏,而卫星测高技术则可以解决这一问题,卫星测高技术可以提供大范围、高精度的海面观测资料,能
在现代战争中,防御工事已经不再面临单一的侵彻破坏或爆炸破坏,随着各类穿甲弹和钻地弹的发展,防护材料更多面临的是在侵彻爆炸耦合作用下的毁伤效应。因此,对于防护材料重要组成部分的混凝土材料,提高其抗侵彻爆炸性能就具有十分重要的意义。本文把功能梯度和混凝土材料相结合,研究了以下几个内容:(1)靶体结构。通过研究不同结构对功能梯度水泥基复合材料的影响,确定靶体使用3层结构。(2)不同功能层的材料选择及配合
相比较于传统的只具备单一运动特性的机构,可重构机构的设计理念是仅使用一个机构或者一个集成的系统,满足复杂工况下的多种任务需求。本文基于对称性提出一种新的可重构机构
随着我国经济的快速发展,能源问题越来越突出,不可再生能源已经不足以满足人们的生产生活需求,太阳能资源作为储量最多的清洁能源,在我国的能源体系中占据了重要的地位。而我国的光伏电站主要修建在日照强烈的西北荒漠地区,光照强烈,但是环境恶劣,光伏组件表面容易被灰尘覆盖造成热斑效应,不止影响发电效率,甚至对光伏组件产生不可逆的永久性损坏。为了实现我国恶劣工作环境中光伏电厂光伏组件表面灰尘的清扫工作,本文设计
本文主要研究带有标准发病率的反应扩散传染病模型在齐次Neumann边界条件下平衡解的全局分支和稳定性.首先应用线性化方法分析ODE模型和PDE模型常数平衡解的稳定性及扩散导致
本文设计、制备了4种新型阻燃体系,将其应用于聚乳酸(PLA)的阻燃改性,测定了阻燃PLA材料的力学、阻燃等性能,对相关机理进行了详细探讨,具体包括:首先将金属有机框架材料(ZIF-8)
高速铁路要求轨道具有高平顺性,高速综合检测列车(动检车)可以用于动态检测轨道不平顺,是评估高速铁路运营安全、舒适性和指导线路养护维修的有效手段。轨道动态不平顺包含了
马克思逝世后,作为马克思主义创始人的恩格斯,肩负着在新的时代背景下解读、发展马克思主义理论的重担。唯物史观作为马克思一生中重要理论发现之一,成为反马克思主义者的众矢之的。恩格斯晚年时期,面对资本主义世界的新变化和资产阶级学者对唯物史观的非难,他在与多人的往来书信中进一步阐明了唯物史观的基本原理、丰富了唯物史观的内涵。首先,他在坚持经济必然性的基础上论证了上层建筑的相对独立性及其对经济基础的反作用,
随着海运业的发展,船舶数量不断增加,船舶正朝着大规模、高速化的方向发展,海上通信业务正在高速发展。海事通信对于频带的需求日趋增长,无线频带资源作为一种有限的自然资源,日趋稀缺。构建海上认知无线电通信系统是有效的解决方案。海上认知无线电系统中因为检测标准的不同,带宽是自适应调整的,子载波的数量是可调的。而正交频分复用(Orthogonal Frequency Division Multiplexin
为应对目前果蔬市场对果蔬农残的快速筛查需求,本论文工作主要采用敞开式离子源技术结合高分辨飞行时间质谱仪,建立一套水果蔬菜中农药残留快速、高效、准确的检测方法。首先,对热辅助解吸-低温等离子体源(Thermal desorption-low temperature plasma,TD-LTP)中热辅助解吸温度、氦气流速和离子传输管温度进行调试优化,确定最佳实验检测参数。之后,将上述TD-LTP电离源