【摘 要】
:
电化学水分解技术是一种可以替代传统化石燃料的清洁、可持续的氢气发电技术。这对缓解能源危机、发展可再生能源以及改善环境等问题具有十分重要的意义。析氧反应(OER)和析氢反应(HER)作为两个半反应,在动力学上属于慢电子转移反应,提高电催化过程中的电子转移效率是电化学催化和储能领域的主要挑战。因此,设计出高效电催化剂来增加反应过程中的电子转移效率,是降低电化学水分解过电位,并提高电催化效率的关键。当前
论文部分内容阅读
电化学水分解技术是一种可以替代传统化石燃料的清洁、可持续的氢气发电技术。这对缓解能源危机、发展可再生能源以及改善环境等问题具有十分重要的意义。析氧反应(OER)和析氢反应(HER)作为两个半反应,在动力学上属于慢电子转移反应,提高电催化过程中的电子转移效率是电化学催化和储能领域的主要挑战。因此,设计出高效电催化剂来增加反应过程中的电子转移效率,是降低电化学水分解过电位,并提高电催化效率的关键。当前,Ru、Ir和Pt等贵金属电极的高成本和稀有性阻碍了它们在催化剂中的大规模应用。因此,开发用于OER和HER的非贵金属、高效电催化剂具有重要的现实意义。迄今为止,由于非贵金属的过渡金属(例如,Co,Ni)的高效、低成本和资源丰富等特点,作为OER和HER的贵金属催化剂的替代品,它们引起人们的广泛关注。在本文中,以钴(镍)基氧化物作为研究对象,提供了一种简便新颖的制备方法,同时对钴(镍)基氧化物的形貌及组成进行表征,并对其进行相关的电化学性能测试及讨论。具体的研究内容如下:1、通过两步水热反应制备了多界面的FeOOH@NiCo2O4杂化纳米花。先通过第一步水热法合成NiCo2O4纳米花,经过400℃煅烧后的NiCo2O4纳米花作为前驱体,接着采用第二步水热法,在NiCo2O4纳米花表面生长FeOOH纳米颗粒,形成半导体异质结。该异质结电催化剂可提供丰富的电活性位点,并形成的FeOOH@NiCo2O4异质界面还可以提高电荷转移速率。结果表明,在HER和OER条件下,制备的催化剂表现出较强的电催化性能。此外,在双电极分水系统中,FeOOH@NiCo2O4异质结构作为一种双功能电催化剂,在10 m A cm-2电流密度下只需要1.58 V的电池电压,同时还具有优异的循环稳定性。2、我们采用一步水热法制备了三维球形Ni(OH)2@NiCo2O4异质结,并通过调节异质结的Ni/Co原子比来优化催化剂,然后研究了它们作为碱性电解质中OER和HER的高效电催化剂。其中,优化后的Ni(OH)2@NiCo2O4时具有很高的电催化活性。在10 m A cm-2时,OER和HER分别对应的过电位为215 m V和189 m V。Ni(OH)2@NiCo2O4异质结催化性能的提高归因于Ni(OH)2和NiCo2O4的化学协同结合,大的比表面积暴露出更丰富的活性中心,以及易于电子/电解质传输的异质界面。3、通过简单的水热法制备出Fe2O3@Ni(OH)2异质结,之后在空气中高温煅烧,将Ni(OH)2氧化为Ni O,得到Fe2O3@Ni O氧化物。异质结中Fe2O3中存在的氧空位,可以有效改善电荷分离和界面电荷转移效率。在1.0 M KOH碱性电解液中,在10 m A cm-2电流密度下,OER和HER过程中分别表现出224 m V和187 m V的低过电位以及低Tafel斜率。与单一的Fe2O3和Ni O材料相比,Fe2O3@Ni O异质结具有更优的电催化活性和稳定性。
其他文献
过渡金属催化的直接C-H键功能化已被证明是快速构建各种C-C键的有效策略。其中,烯烃因其广泛存在以及多样性转化等优势而被经常用作碳氢键偶联底物,以实现直接的C-C键偶联。本论文开发了一种铑催化烯烃对吲哚2位C-H键直接官能化反应的方案,为合成功能化烯烃及其复杂衍生物提供了一种方便且高效的方法。通过选用不同的烯烃,并经反应条件的调控,实现吲哚2位C-H键的选择性烯基化与烷基化反应。相关反应的底物普适
由于可以有效地减少Haber-Bosch法产氨所带来的能源消耗和环境危机,电化学固氮(eNRR)逐渐成为了近些年的研究热潮。目前来看,该方法的核心在于寻找高效、稳定的固氮催化剂。因具有独特的电子结构和力学性能,二维材料(2D)有望成为固氮催化剂的主要候选者。通过基于密度泛函理论的第一性原理计算,本论文主要研究了2D硒化镓、过渡金属团簇负载石墨炔(GDY)等催化体系电化学固氮的可能性,并进一步通过缺
现代社会的快速发展致使全球能源消耗与日俱增,能源危机愈发严峻。因此,开发绿色能源迫在眉睫。氢能因具有高燃烧值、绿色、可再生等优点成为最有潜力的清洁能源,电解水制氢技术被认为是最有前景的制氢方法之一。然而,阳极析氧反应(OER)具有较高的反应能垒限制了电解水制氢技术的发展。尿素氧化反应(UOR)因其极低的理论氧化电位,能有效降低能耗,还能降解富含尿素的污水,减轻环境污染,有潜力替代OER来提高电解水
核心素养是当今国际科学教育共同追求的目标,关注学生核心素养的培养是目前世界各国基础教育理论研究和实践变革的重大趋势。“模型认知”素养作为化学学科核心素养的重要组成部分,既是育人价值的集中体现,也是学生应具有的关键能力。在对国内外模型、建模与模型认知等相关研究进行梳理后,本研究以国际核心素养框架、大型测评中模型、建模和模型认知的概念框架和《普通高中化学课程标准(2017年版)》中模型认知水平为基础,
当前,大力发展清洁能源,创造更加宜居的生活环境已经成为全社会的共识,通过如析氧反应、析氢反应、二氧化碳电还原反应等清洁反应获取氢能以及高附加值工业产品等无疑是向可持续发展目标迈进的一条重要道路。现如今对于上述几个反应的电极材料的研究正在蓬勃发展,人们希望得到尽量接近热力学电位的催化材料以减少电解过程中的能量损耗。过渡金属及其化合物材料由于其丰富的轨道电子展现出了良好的催化性能,其中尤以铁、钴、镍基
开发高效的能源转换、储存和运输技术是实现未来能源可持续发展的关键。具有高质量能量密度的氢气被认为是理想的清洁能源载体。电化学分解水产氢是一种非常有前景的能源转换和制氢策略。电解水反应主要由阴极的氢气析出反应(HER)和阳极的氧气析出反应(OER)这两个半反应组成。尽管理论上仅需1.23V的电压即可实现电化学水裂解,但由于迟缓的HER和OER动力学,在实际应用过程中水分解电解槽需要更高的电压去驱动反
可充电电池在生产生活中大量应用,一些近年来发展的新型电池备受关注。锂硫电池具有高的能量密度,可作为长续驶里程电动汽车动力电池,但单质硫的导电率低、体积变化大和充放电过程中多硫化物的穿梭效应等问题严重制约其发展与应用。此外,可充电水系锌离子电池极有希望应用在可穿戴设备,虽然其拥有价格低廉且对环境友好的优点,但也存在着电池电压范围低、电极材料尚不完善、可穿戴设备应用过程中的柔性环境带来的不稳定等一系列
电致化学发光(Electrogenerated chemiluminescence,ECL)因其高灵敏度、低检测限、宽线性范围、仪器操作简单和高信噪比等优势吸引了人们广泛的关注和研究。该技术已广泛应用于金属离子检测、环境监测、医学诊断、免疫测定、药物分析、食品检测等许多领域。目前,ECL常用的发光材料主要有:联吡啶钌及其衍生物、鲁米诺及其衍生物、纳米材料等等。稳定高效的ECL试剂的合成和应用一直是
呋喃和吡喃等含氧杂环化合物广泛存在于天然产物和合成化学品中,表现出多种生物和药理活性,在药理学、催化和材料科学等领域中具有广泛的应用。本文总结了近年来关于吡喃、呋喃等含氧杂环化合物的合成方法,并发展了基于苯丙炔胺类化合物与环己二酮及2-羟基/氨基-1,4-萘醌化合物的1,4-共轭加成/分子内环化串联反应,发展了系列结构新颖的五元/六元含氧杂环化合物的合成新方法。具体研究内容如下:(1)开展了碱金属
本论文主要开展了β-二亚胺稀土-镍杂核配合物的合成、结构表征及其反应性研究,其主要内容包括:1.通过β-二亚胺稀土金属双烷基化合物LnacnacLn(CH2SiMe3)2(THF)(Ln=Y(1,2),Lu(3))与二苯基膦甲基苯胺(Ph2PCH2NHPh)和二苯基膦苯胺(Ph2PNHPh)的烷烃消除反应,合成得到β-二亚胺稀土金属胺基配合物LnacnacLn(Ph2PCH2NPh)2(Ln=Y(