赋范空间中平分集的结构与内接正方形问题

来源 :哈尔滨理工大学 | 被引量 : 0次 | 上传用户:cj258399542
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于实赋范线性空间上不具有类似于内积空间中具有良好性质的正交的概念,实赋范空间中若干几何对象和几何问题变得异常复杂。本文研究两类与赋范线性空间上的广义正交概念密切相关的几何问题:实赋范空间上平分集的几何结构与实赋范平面上的内接正方形问题。   作为本文主要结论之一,我们证明一个维数不小于2的赋范线性空间上两点的平分集是道路连通的。该结论改进了Horvdth在2000年给出的结果:实赋范线性空间中的平分集是连通的。   本文的另一个主要内容考虑欧氏平面上最难的公开问题:简单闭曲线的内接正方形问题在实赋范平面上的推广。我们证明:一个对称的Minkowski平面上任意一条简单闭凸曲线都可以内接一个Singer正交意义下的正方形,也可以内接一个面积正交意义下的正方形。
其他文献
基于内容的图像检索技术是一门新兴的技术,相对于传统检索方式有着巨大的优势,在许多领域有极其广阔的应用前景。至今,基于内容的图像检索依然是一个非常热门的研究领域并取得了
令N表示全体非负整数集合,设整数h≥2及集合A(∈)N,若每个充分大的整数n皆可表为A中h个元素的和,则称集合A为h阶渐近基.若集合A是h阶渐近基且其任意真子集均不是h阶渐近基,则称集
分枝过程和生灭过程是概率论中两个经典且非常活跃的研究领域,它们不仅自身具有重要的理论意义,而且还有着十分广泛的应用背景。本文的研究内容主要包括随机环境中的分枝模型和
学位
运用奇异积分方程方法,本文首先研究了骨单位密质骨含单个曲线微裂纹平面问题,得到了该问题的一般解所满足的奇异积分方程组.作为数值算例,分别研究了密质骨含径向微裂纹和圆
寻求非线性随机发展方程的精确解,在非线性科学研究中具有非常重要的意义,也是一项意义深远的工作.本文主要研究了若干Wick-型随机发展方程,得到了它们形式丰富的精确解,其中
非线性微分一差分方程不仅在工程技术、自动控制以及航天卫星等尖端领域中有着重要的应用,而且在计算机科学、人口动态学和经济金融等领域也已成为不可缺少的数学工具.其中,
由于数学物理反问题在医学成像、无损探伤、气象预报等领域有着越来越广泛的应用,因此反问题受到更多学者的关注。反问题大都具有不适定的特点,该特点也是反问题研究的难点所
量子群作为代数学研究的重要分支,近些年来,它的相关理论受到人们的广泛关注.2002年由王顶国教授等引进的量子群Uq(f(K,H))是泛包络代数U(sl2)量子化Uq(sl2)的自然推广.本论文基
在内积空间中,保持正交性的线性算子必是一个线性等距的常数倍。一个很自然的问题是,这个结论在一般的赋范线性空间中是否成立。对保持某种广义正交性的线性算子会使我们对此