半参数回归模型的一些理论研究

来源 :西北工业大学 | 被引量 : 1次 | 上传用户:robinjwj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文对半参数回归模型主要做了以下三个方面的理论研究:(1)将随机加权法应用到半参数回归模型的误差密度f(x)的估计当中去,在适当的条件下,证明了误差密度的加权核估计f<,nl>(x)的强相合性、弱相合性及渐近无偏性.(2)对半参数回归模型中的参数部分β和非参数部分g(t),用最近邻中位数估计去估计它们,其中h称为光滑参数.文中研究了光滑参数的选择问题,利用中位数交叉核实方法选择了h,记为h<*><,n>,在一定的正则性条件下,给出了h<*><,n>的上下界估计和g(t)的估计的收敛速度.(3)假设在模型当中e<,i>(l≤i≤n)是定义在概率空间(Ω,A,P)上并且在R中取值的严平衡α-混合时间序列.在(x<,i>,t<,i>)是固定设计点列时,采用局部多项式光滑来估计模型中的非参数部分g(t),然后结合最小二乘法来估计β,得到的估计值β和g(t)是关于核函数Kh(t)的窗宽h的函数,h是变化参数.在该文当中,应用交叉核实方法进行参数的选择,进而对模型进行选择,最后讨论了模型的适应性问题.
其他文献
随着科学技术的不断发展,人们需要处理越來越多的多变量系统及多维信号,例如多维数学滤波器,多变量网络实现,多维数学图像综合处理,地震检测数据处理,X-射线图片的增强,森林火灾及农
一个阶为n的图G是p-因子临界,如果去掉G中的任意p个顶点产生的图具有完美切配,其中p是满足0≤P
该文对平面代数剖析及其样本点和有理数域上二元多项式正定性的判定问题作了深入的研究.传统的柱形代数剖分算法将平面剖分成若干个互不相变交的区域,但通常情况下,这种算法
在这篇论文中主要研究乘积流形Sn×S和Hn×S中具有常截面曲率的超曲面.全文分为四章.  在第一章中首先介绍超曲面的研究背景;其次,我们给出了乘积流形中的一些相关知识;最后,提
近些年来,数字指纹技术不断地应用到数字作品的版权保护中,它能够有效地跟踪到非法用户。但是,在嵌入指纹的图像中存在着合谋攻击,为了准确地跟踪到非法用户,并且不诬陷合法的用户
该文主要研究了半线性椭圆型偏微分方程的反问题的解的整体唯一性.所使用的方法是线性化和Dirichlet-Neumann映射.同时获得了正问题解的存在唯一性.
对六角系统H的完美匹配M施行R-旋转变换,就是同时将H中所有正常M-交错六边形变换为正常M-交错六边形,从而得到H的另一个完美匹配.Ohkami等利用这种变换,建立了Cata型六角系统
设p是一个素数,F=Fpf是特征p的有限域,G×Tq是自由秩为q的有限生成交换群,其中G是有限群.本文主要研究群代数F[G×Tq]的K2群的计算和结构问题,并计算了有限循环群代数F[Cpn]的高
该文运用分析推理和图形描述的方法在逆高斯(IG)有关理论下应用方面 作了较为系统的讨论.全文结构如下:第一章对于逆高斯分布的发展与论文的主要内容作了简洁的描述.第二章在
在该文中,我们介绍了作为数论的重要部分的多种zeta函数,如Riemann zeta函数、Hurwitz zeta函数、Epstein zeta函数和Epstein-Hurwitz型zeta函数,和有关Casimir效应的基本理