【摘 要】
:
光纤通信向着高速率、大容量、远距离传输的目标发展,由于光纤损耗,需要使用光学放大,为增加传输距离,必须相应地使用越来越多的光放大器。光放大器也使噪声放大,为保持较高的信噪比,信号光功率需要增大。然而,当光信号功率超过一定值时,光纤内的非线性会增强,产生非线性干扰噪声。在长距离、高激光发射功率的光通信系统中,光纤中累积的非线性效应成为影响系统通信性能的主要因素,信号由于受到非线性而产生畸变,使得通信
论文部分内容阅读
光纤通信向着高速率、大容量、远距离传输的目标发展,由于光纤损耗,需要使用光学放大,为增加传输距离,必须相应地使用越来越多的光放大器。光放大器也使噪声放大,为保持较高的信噪比,信号光功率需要增大。然而,当光信号功率超过一定值时,光纤内的非线性会增强,产生非线性干扰噪声。在长距离、高激光发射功率的光通信系统中,光纤中累积的非线性效应成为影响系统通信性能的主要因素,信号由于受到非线性而产生畸变,使得通信质量降低。常见的传统非线性补偿算法,如数字背向传输(DBP)算法、相位共轭双波传播算法等存在着一些计算复杂度过高、传输容量缩减等不足。与这些传统非线性补偿算法相比,基于机器学习的算法具有计算量较小、计算速度快、非线性拟合能力强等优点,并且已有不少研究人员将机器学习算法应用到光纤通信系统中,并证实其可行性。本课题尝试利用机器学习中的人工神经网络算法补偿光纤中累积的非线性效应。本文首先研究了光纤中非线性效应的来源及产生原理,接着探讨了神经网络模型的结构及工作原理,随后提出基于人工神经网络的算法用于补偿光纤中累积的非线性效应,并通过软件仿真光通信系统验证了神经网络的非线性均衡能力。通过仿真结果表明,经神经网络补偿后的系统误码率降低,系统星座图表现良好。文中涉及两种光通信系统,一种是常规高阶高速率的相干光通信系统,针对系统中传输的复数信号采用了复数网络结构进行均衡。另一种则是实验室近两年研究的基于单纤双向的反射式调制相干光通信系统,并首次将神经网络模型应用到这种反射式系统结构中,展现出基于人工神经网络补偿光纤非线性效应的有效性,且由于反射式系统单纤双向传输的特点和特殊的调制方式,使该系统在保密通信领域发挥作用。
其他文献
目前,外骨骼机器人已经在成人康复领域有了一定规模的应用,但在脑瘫等儿童康复领域还未形成大范围的应用规模,市面上亦缺乏成熟的儿童外骨骼机器人,有关外骨骼机器人对儿童运动能力的研究也很初步,缺少外骨骼机器人对儿童步态的影响及运动功能评估研究。因此,本论文针对该问题,对AIDER儿童外骨骼机器人步行状态下的运动功能及步态影响进行了研究,以验证儿童外骨骼机器人对于儿童地面步态训练是否是可行的,步态生物力学
近些年随着深度学习的快速发展,基于深度学习的算法被广泛运用于二维目标检测和姿态估计中。在实际应用场景下,比如机械臂抓取、自动驾驶以及AR领域中,目标物体往往处在复杂的环境中,容易受到遮挡。针对遮挡场景下的物体6D姿态估计研究具有十分广阔的空间和重要的研究价值。因此本文开展基于深度学习的被遮物体姿态估计的研究,主要包括三部分:受遮挡情况下物体姿态估计问题研究,工业场景下物体自遮挡姿态估计问题研究,多
近年来,图神经网络在社交网络、推荐系统、分子化学和知识图谱等领域取得了显著的成果。一方面,它解决了深度学习方法难以处理非欧式空间数据的问题,另一方面,它提供了一种对非规则数据提取特征的方法。图结构数据是生活中广泛存在的一种数据结构,与欧氏空间的数据不同,图结构可以更好的反映节点之间的联系。随着图神经网络的迅速发展,许多针对图结构数据的研究也如雨后春笋般涌现,这些研究主要包括节点表示、链接预测和图学
扭摆滑动定向作业过程中,最常见的问题是“托压”,来自于固定的钻具与井壁之间的摩擦力。这一问题可通过扭矩摇摆技术解决,即向钻具施加正、反向扭矩,化静摩擦力为动摩擦力,以减少钻具与井壁间的作用力。目前由于缺乏相关理论支撑,在滑动定向作业过程中为使工具面转动至目标值,仍需通过扭摆系统人工对正、反向扭矩值进行调整,该方式依赖于工程师个人经验,各井的控制效果因人而异,参差不齐,作业效率较低。针对以上情况,依
路径规划一直是热门的话题和研究方向,如何及时捕获和提前预测车辆行驶时间的动态变化是解决路径规划的难点及重点,本文提出的算法能够在保证计算速度的同时,提高路径规划的准确度。本文从以下几个方向研究路径规划问题:如何最小化路径行驶时间的均值和标准偏差的(加权)线性组合来解决可靠最短路。在合理假设基础交通网络的行驶时间遵循多元高斯分布的情况下,提出了一种高斯过程路径规划(GP3)算法来计算先验最优路径作为
三维点云语义分割是将点云中的每个点按照各自的类别进行语义的划分,对同一类别的点进行相同的标注。随着三维数据获取的难度变小,基于三维数据的技术开始逐渐发展,也已经开始应用在自动驾驶、智能机器人、遥感和医疗等领域中。点云语义分割算法是三维点云处理的重要方向之一,传统的点云分割方法精度不高,因此,本论文主要研究的内容为基于深度学习的三维点云语义分割,使用的基础网络为PointNet++,并对其从局部空间
回复式神经网络(Recurrent Neural Networks,RNNs)是深度学习领域中的一种基础的人工神经网络,其作为处理序列数据的记忆模型被广泛应用。如何处理好梯度消失与梯度爆炸问题一直是训练RNN的关键和难点。长久以来,人们提出了多种方法来解决RNN训练时的梯度问题,不断设计新的RNN变体用以处理更长的序列。尽管许多经典的模型已经被提出,如何使RNN模型在快速应对序列中短期变化的同时捕
计算机视觉发展过程中,人体姿态估计任务一直备受关注。在工业界和学术界,姿态估计任务也是极具挑战性的任务之一,目标是使机器尽可能的检测出人体样本中关键节点,比如鼻子、左右肩、脚踝、手腕。随着深度神经网络的引入和应用,人体姿态估计任务往往是预测人类行为规律的基础研究任务,为行人检测、样本重识别、特殊行为检测、人机交互等任务提供了基础预测能力。当前主流的人体姿态估计网络框架分为两种应用型网络,即人体结构
在工业产品的生产过程中,通常会无法避免地产生一些表面缺陷,因此需要检测出产品的表面缺陷以便及时发现问题并且对产品质量加以控制。与人工检测方式相比,基于计算机视觉的工业表面缺陷检测方法,具有成本低、安全性好、效率高、灵活性好等诸多优势,已成为自动化缺陷检测系统的重点研究方向之一。针对工业生产中产品的表面缺陷检测问题,本文设计了一种基于计算机视觉的深度学习平台,在表面纹理较规律的缺陷检测任务中取得了很
近几年,图神经网络的研究方兴未艾,在诸如知识图谱、社交网络、生物和化学等领域取得了卓越的效果。人们在享受它高效能力的同时,也在从各个方面对其可解释性进行研究,致力于探明其内部决策的机理。数学知识的推理由于知识的标准化、描述的规范化和使用图谱化形式进行推理,与图神经网络具有高度的契合性。因此将图神经网络与数学自动推理系统相结合,可以极大提升系统的学习和推理能力。针对其可解释性进行研究,能够使推理的过