高效统一气体动理学格式及可压缩湍流小尺度特性研究

来源 :清华大学 | 被引量 : 0次 | 上传用户:sdrb_123456
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
跨流域多尺度流动问题具有重要的学术研究和工程应用意义。本文对适合全流域的统一气体动理学格式进行改进,提高其计算效率,并应用到典型跨流域多尺度流动问题的数值模拟研究。为提高大规模并行时的计算效率,基于物理空间和速度空间同时分块,采用高效的并行分组算法,并调整了UGKS的计算流程,发展了三维复杂分块结构网格上适合大规模高效并行计算的UGKS算法。多种典型算例测试验证了新算法在从小规模到超大规模计算中的高效性。为高效模拟全流域轴对称流动,基于局部笛卡尔坐标系下的分布函数演化解,构造了轴对称源项的时间演化解,进而发展了具有多尺度特性的UGKS-AS及其隐式算法,多种典型算例测试验证了新方法的高效性。针对连续流/稀薄流共存的多尺度流动,在连续流区对UGKS进行了简化,避免了速度空间的离散,提高了总的计算效率。应用UGKS对典型可压缩湍流中的小尺度脉动特征进行了数值模拟研究。通过对声波与马赫数为8的激波相互作用的模拟,发现考虑到真实强激波结构与高频声波的稀薄效应,激波对高频声波幅值的放大作用得到了削弱,声波频率大于分子平均碰撞频率后放大因子几乎减小了一半。对二维、三维可压缩均匀各向同性衰减湍流进行了直接数值模拟,研究了不同尺度脉动的统计特性,分析了小尺度脉动的稀薄效应并定量评估了NS方程的适用性。
其他文献
杂质是材料中非常重要的一类缺陷。它的存在,不仅会影响材料的电子输运、磁学等方面的性质,同时也会与位错、晶界等其他结构缺陷构成复合缺陷,从而显著的影响材料的强度、韧性等力学性质,甚至决定了材料的基态结构。研究杂质在不同体系中的作用,并寻找微观层面上的解释,除了具有重要的科学意义之外,也会有力的促进高性能的材料设计以及现有材料性能上的改善,因而同时具有很强的应用价值和指导意义。在本篇论文中,利用精确的
超图H=(V(H),E(H))是一般图的推广,其中V(H)是顶点集合,E(H)是边集合,满足E(H)(?)2V(H)是V(H)的一个非空子集族.如果对任意e ∈ E(H)满足|e|=k,则称H是k一致超图.超图H的匹配M是一个两两不交的边集合.如果M覆盖了超图的所有顶点,则称M为完美匹配.顶点u在超图H中的度记为deg(u).在组合学中,很多的开放问题可以转化为在一个超图中寻找一个完美匹配的问题,
Boris Dubrovin和Di Yang在其工作中提出猜想:满足局部Calabi-Yau条件的三次Hodge积分的生成函数为某可积方程簇的Tau函数,且此方程簇可视为半离散二维Toda方程簇的某种约化。在本文中,我们给出此方程簇的Lax形式的构造,称之为分数阶Volterra方程簇,并仿照研究二维Toda方程簇的相关方法,对分数阶Volterra方程簇的哈密顿结构、Tau结构、双线性方程、Vi
流固耦合问题在许多工程领域中具有很强的应用背景和需求。流固耦合问题常常涉及大变形和几何非线性,如液面的破碎及融合等,传统网格类数值方法存在网格畸变、追踪自由界面等方面的困难。弱可压物质点法(WCMPM)用于模拟流体时不存在网格畸变的问题,同时质点可以自动追踪液面的位置。但在中小变形情况下,物质点法精度不如有限元法。耦合有限元物质点法(CFEMP)利用有限元模拟固体区域,物质点模拟流体区域,而两者的
在页岩气开采过程中,定向钻井与水力压裂是两个关键工程步骤,而它们都是在页岩这种各向异性材料中完成的。页岩在宏观上由于沉积作用表现出本构、强度与断裂的各向异性,在微观上则呈现出多孔介质材料的特征。因而对于页岩这种各向异性多孔材料的强度性质和断裂行为研究具有重要的科学意义和工程价值。多孔充液弹性本构模型将固体骨架与含有流体的连通孔隙在宏观上看作一种均匀材料,避免了讨论复杂的微观结构,同时可以描述介质中
空中水汽输送是全球水循环中最为活跃的一个环节,水汽输送的特性影响着降水的形成和分布,进而对全球各地区水资源条件和生态环境产生深远的影响。但是,目前我们仍缺少相关的模型工具从水文水循环视角来描述空中水汽输送的格局和结构。针对这一问题,本文提出了一种利用数学中的图结构对复杂的水汽输送格局进行描述的概念性模型,即水汽输送网络。水汽输送网络的研究以追踪每个水汽单元的拉格朗日运动轨迹(迹线)为基础。为了建立
估计理论主要是指通过经验或者测量数据对模型中的参数的值在某种误差准则下给出最优估计。在控制理论中的估计问题主要是指通过对系统的输出进行测量来实现对系统状态和参数的估计。在实际中控制系统常常受到外部干扰和噪声等因素的影响,系统的状态通常是随机的。对系统的观测一方面部分状态不可直接观测,另一方面也会受到观测噪声等的影响,具有随机误差。因此控制理论中的估计问题在数学上被抽象成对一个随机微分方程组在给定观
在撞击中,能量吸收结构通过消耗冲击能量从而保护乘员或核心部件。金属薄壁结构的塑性大变形和韧性断裂能够不可逆转地吸收大量动能,且质量较轻,故常被用作能量吸收结构的主要耗能方式。相比其他薄壁结构的变形,金属圆管在刚性模具轴压下的膨胀、缩径、翻转变形具有单位质量能量吸收率(SEA)高、反力稳定且无峰值、对载荷不敏感等优势,故在工程中得到了广泛的应用。理解和优化圆管变形的能量耗散机制是冲击防护领域有重要意
形状驱动效应和形状共存是A-130缺中子过渡核区原子核的重要特性之一,反映原子核中单粒子运动和集体运动的相互关联和转化,而在A-140丰中子核区,反射不对称性的八极形变对原子核内基本对称性的研究具有重要意义,两者均是原子核高自旋态研究中的前沿且重要的课题。本工作中对缺中子核129Xe和丰中子核140,141Xe的高自旋态研究,便是从以上两方面分别给出原子核的结构和形状等信息。在129Xe研究中,通
对强相互作用物质的研究,特别是对其对称性的破缺和恢复,以及与之对应的相变现象的研究,仍然是目前理论物理领域的一个重要课题。随着研究的深入,人们自然地开始考虑更多的自由度,例如磁场和手征化学势等。这些自由度极大地丰富了QCD相图的结构,也加深了人们对于强相互作用体系的认识。同时,在天文学、粒子物理和凝聚态物理等众多领域,这些研究也具有着重要的应用。而作为研究强相互作用物质的重要实验手段,相对论重离子