论文部分内容阅读
当今世界能源体系主要建立在石油、煤炭、天然气这三种可燃性化石资源基础之上。作为三大化石资源之一的天然气,储量丰富,热值较高,并且是一种清洁能源。同时随着页岩气开采技术不断地取得突破,为我们的能源需求提供了方向。页岩气的主要成分为甲烷,随着能源危机和环境污染不断加剧,甲烷二氧化碳重整反应(DRM)越来越受到人们的重视,因为该反应可以同时把两种大气污染气体转化为氢气和一氧化碳,实现“废物利用”,同时生成的氢气和一氧化碳可以作为费托合成的原料和制备其他的烃类化合物。采用模板铸造法制备大比表面积LaNiO3-x-SBA-15(x=0,0.2,0.6,1.0)催化剂,并应用于甲烷二氧化碳重整反应。经过TPR,XRD,TEM,TG-DSC等一系列的表征手段之后,可以发现催化剂的比表面积越大,催化剂的催化活性和稳定性更加优良。这是因为催化剂比表面积越大,活性金属粒子的分散度越大。LaNiO3-1.0-SBA-15催化剂拥有最大的比表面积,在经过48小时的稳定测试之后依然可以保持一定的活性。动力学研究表明,具有小金属纳米粒子尺寸的催化剂表现出更高的活性,这也可以抑制碳沉积。基于SBA-15的模板铸造法制备纳米多孔钙钛矿LaFe1-xNixO3(x=0.3,0.5,0.7)催化剂,并用于甲烷二氧化碳重整反应。一系列表征显示催化剂具有更大的比表面积,同时在制备过程中加入了Fe,使催化剂具有更加稳固的钙钛矿结构,这将有利于催化剂的稳定性。经过大量的表征手段可以发现制备的大表面积LaFe0.5Ni0.5O3在长达80小时的稳定测试后依然具有良好的活性,同时没有明显的失活和积碳发生。这是因为在DRM反应中催化剂还原为Ni/LaFeO3-La2O3碱性添加剂La2O3和钙钛矿氧化物LaFeO3与活性组分有很强的相互作用,降低了金属颗粒的表面能,防止了活性Ni颗粒的聚集,从而增强了抗烧结性能,因此催化剂具有较长的寿命。利用大表面积LaFe0.5Ni0.5O3催化剂为模板,负载Cu(NO3)2和Co(NO3)2形成x%y/LaFe0.5Ni0.5O3(x=6、8、10,y=Co,Cu)双金属催化剂,并用于甲烷二氧化碳重整反应。Co6-Ni和Cu10-Ni催化剂在稳定性测试之后,TG-DSC表征显示仅有微小的质量损失,显示催化剂拥有良好的抗积碳性能。这是因为双金属催化剂活性组分与载体相互作用增强,阻碍活性组分的扩散、迁移,同时提高活性组分的分散度,减缓烧结。两种金属之间的协同作用能够改善抗积碳和抗烧结性能。