【摘 要】
:
太赫兹波(Terahertz,1 THz=1012Hz)是位于微波和远红外波间的电磁波,在无线通信,安全系统和天文物理等领域中具有十分广泛的应用前景。新兴的超材料(Metamaterials,MMs)可以实现人工调控电磁性质,为太赫兹器件的开发提供了广阔的设计空间。基于非对称结构的明模式和暗模式相互作用产生的Fano共振具有高品质因子且共振曲线尖锐。石墨烯具有高载流子迁移率和良好可调性的优点,它是
论文部分内容阅读
太赫兹波(Terahertz,1 THz=1012Hz)是位于微波和远红外波间的电磁波,在无线通信,安全系统和天文物理等领域中具有十分广泛的应用前景。新兴的超材料(Metamaterials,MMs)可以实现人工调控电磁性质,为太赫兹器件的开发提供了广阔的设计空间。基于非对称结构的明模式和暗模式相互作用产生的Fano共振具有高品质因子且共振曲线尖锐。石墨烯具有高载流子迁移率和良好可调性的优点,它是太赫兹器件的理想调控介质。为了获得较高性能的THz可调谐器件,我们以石墨烯微结构为有源区,采用有限积分法开展了超构材料器件的模拟设计工作,主要研究了结构参数,石墨烯费米能级和工作频率的影响,所得主要结论如下。基于石墨烯双椭圆不对称微结构,通过沿着入射波极化方向平移两个椭圆结构的方法引入非对称度,可以激发明显的Fano共振谷。当不对称度在6-18μm的范围内变化时,Fano峰的振幅调制深度达到75%以上,其Q因子的值大于13。当石墨烯费米能级为0.2-1.0 e V时,Fano共振峰的频率和幅值调制深度分别为5%和46%。在石墨烯非对称双条带微结构基础上,设计实现了一种新型双峰THz可调谐吸收器,当两个条带的长度为26μm和16μm时,在1.06 THz和1.67 THz出现两个明显的共振吸收峰,对应的吸收峰值为84%和90%。另外,通过整片石墨烯层代替金属衬底,该结构可以实现对入射太赫兹波的双向调节:如果太赫兹波正向入射,该结构为典型的吸收器,其吸收率可以达到88%;若太赫兹波反向入射,石墨烯双条带微结构可以作为反射型调制器,则其振幅和频率调制深度将达到81%和49%。
其他文献
糖基磷脂酰肌醇锚定蛋白(Glycosylphosphatidylinositol anchored protein,GPI-Aps)是一类非常重要的膜蛋白,广泛存在于真核生物中,其核心结构域高度保守,一般由GPI部分和蛋白部分组成。其中央结构域含有8个保守的Cys位点,可形成4对二硫键,对维持蛋白结构及功能至关重要。LLG1蛋白及其家族成员是一类典型的GPI-Ap,作为Cr RLK1L家族类受体激
岩藻多糖(Fucoidan)是一种多功能海洋碳水化合物聚合物,其化学成分和生物活性在海藻物种之间以及全球不同位置的物种内部均不同。在这项研究中,岩藻多糖是从生长在中国山东省威海市的裙带菜的孢子囊中提取。通过透析的方法,获得了分子量截留值(MWCO)分别为>300 k Da和<10 k Da的两种岩藻多糖组分。比较了来自Sigma的岩藻多糖标准品(Fstd,≥95%,CAS:9072-1
血吸虫病是由血吸虫引起的一种急性或慢性热带寄生虫病,在非洲,南美,东南亚的部分地区,特别是在撒哈拉以南非洲广泛分布,对人们生命和财产安全造成严重损害,据统计,2018年仍有2.29亿人处于血吸虫感染风险。我国流行的是日本血吸虫病,解放后我国进行了数十年的血防工作,顺利完成各个时期的既定目标,成效显著,但血吸虫病在我国并未消除,血防工作依然值得重视。血吸虫成虫以雌雄合抱的形式存在,雌虫只有与雄虫合抱
二硫化钼(MoS_2)作为一种用于HER的非贵金属催化剂,因其资源丰富且价格低廉而备受人们关注。近年来,有关MoS_2电催化析氢性能调控的研究较多,但贵金属负载2H-MoS_2结构演化对其HER性能增强的影响机制尚不清晰。本论文采用改进的电化学拉曼光谱表征装置,原位研究了贵金属(Pd,Au,Ag)负载MoS_2催化剂在HER过程中的结构演化规律,取得结果如下:(1)原位电化学拉曼光谱表征装置的开发
背景:间充质干细胞(Mesenchymal stem cells,MSCs)参与维持组织替换并广泛应用于疾病治疗。组织替换过程中伴随大量的细胞凋亡(Apoptosis),而供体细胞输注治疗过程中也迅速发
对于癌症的治疗而言,多种治疗手段联合治疗相比于单一疗法具有更小的毒性和更好的治疗效果,因此多模式联合疗法在癌症治疗方面具有更广阔的发展空间。但就目前而言,开发简单有效的策略来构建多功能纳米平台仍然是亟待解决的重大问题。在本论文里我们依据肿瘤微环境的特征:温和的酸环境以及过量表达的H_2O_2,构建了一种基于光声成像指导的肿瘤微环境响应智能纳米诊疗试剂DFS@HKUST-1,将光热治疗、化学动力学治
二维材料石墨烯一经发现,凭借其优异的电学表现和机械性能迅速成为多个领域具有应用潜力的热门材料。但石墨烯的零带隙特性限制了其在半导体领域的应用,因此打开石墨烯的带隙对其在半导体领域中的实际应用具有关键意义。目前,通过引入掺杂、吸附原子、引入周期性缺陷、外加磁场、电场及力场等手段都可以打开石墨烯的带隙。应变工程是一种调控半导体材料性能常规的研究手段,旨在通过拉伸应变或者压缩应变来调控二维材料柔性光电器
可降解骨修复材料可在体内逐渐降解并促进骨修复等优点,目前已成为生物材料研究与产品开发的重要方向。无论是可降解无机骨修复材料还是可降解金属骨修复材料目前都存在一定的缺陷:临床上常用的硫酸钙骨水泥存在降解速率过快、力学性能差、生物活性差、抗菌活性低等缺点,而具有优异力学性能的金属锌存在生物活性较低、抗菌活性仍需提高等问题。因此在骨修复过程中容易出现细菌感染的情况,影响骨缺损的修复进度。针对以上缺点,本
卷积神经网络(CNN)已经在图像数据的特征表示方面取得了巨大成功,近几年在图数据挖掘领域也得到广泛关注,出现了图卷积网络(Graph Convolutional Network,简称GCN)的研究。由于通用图往往没有类似图像数据的有序性结构,因此待编码节点的邻域组成对于基于空间域的GCN模型有至关重要的作用。本文考虑到节点邻域的结构影响不同,提出了一种基于邻域选择策略的图卷积网络模型——Co N-
肩袖损伤是常见运动损伤之一,发生后将对肩关节功能产生影响,进而影响到伤者的运动锻炼或运动训练,并对正常的工作和生活造成障碍。目的:探讨PNF康复训练对肩袖损伤功能恢复的作用。方法:22名肩袖损伤的青年学生,根据性别进行分层,并随机分为对照组(常规运动康复组)与实验组(PNF康复组)。对照组采用被动活动度+弹力带抗阻的常规康复训练,实验组采用等张组合+稳定性反转的PNF康复训练。每次30分钟,每周3