【摘 要】
:
所谓排序,就是在一定的约束条件下分配资源去完成一些任务,使得一个或多个目标达到最优。近年来,在线排序和分批排序是研究成果较多的两类排序模型。在线排序是指工件的所有信息在其到达之前是未知的,工件一旦被安排就不允许再改变。平行分批排序是指处理机可以同时加工多个工件,只要工件的尺寸之和不超过批容量。每批的加工时间是该批所有工件加工时间的最大者,批一旦开始加工就不能被中断,直到加工完毕。不可相容工件组是指
论文部分内容阅读
所谓排序,就是在一定的约束条件下分配资源去完成一些任务,使得一个或多个目标达到最优。近年来,在线排序和分批排序是研究成果较多的两类排序模型。在线排序是指工件的所有信息在其到达之前是未知的,工件一旦被安排就不允许再改变。平行分批排序是指处理机可以同时加工多个工件,只要工件的尺寸之和不超过批容量。每批的加工时间是该批所有工件加工时间的最大者,批一旦开始加工就不能被中断,直到加工完毕。不可相容工件组是指属于不同工件组的工件是不可相容的,不能同时加工。 本文中,我们研究了一类平行分批在线排序问题,带有不可相容的工件组。我们有一台或多台批处理机,有若干工件,每个工件分别有到达时间小rj、加工时间pj、尺寸si、所属工件集Fi,工件的这些信息在其到达时刻才能获得。我们的目标是最小化完工时间。采用Graham等人[2]提出的三参数表示法,本文的主要结果如下: (1)给出排序模型1│online,p-patch,b<n,two families,p=1│Cmax的一个最好可能的在线算法。 (2)给出排序模型Pm│online,p-patch,b<n,m families,p=1│Cmax的一个竞争比为2的在线算法,并在到达时间为常数的情形下给出最好可能的在线算法。 (3)给出排序模型1|online,p-patch,b=1,si,two families,p=1│Cmax的一个竞争比为2的在线算法,并在小工件可分割的情形下给出最好可能的在线算法。
其他文献
本文讨论动力气象学中大气运动基本方程组在交替网格上的四阶有限差分方法及其收敛性分析。通过对一阶和二阶导数的四阶近似,边界虚点值的单边展开和四阶插值算子得到方程组的四阶离散格式。通过引入与精确解四阶相容的构造解作为中间量,完成收敛性证明。构造解中引入Poisson方程,从而可以利用Schauder估计得到构造解与精确解的误差。最后利用Grornwall引理证明数值解和构造解的误差也是四阶的。
本文研究了一类具有时空时滞和非局部扩散的媒介传染病模型的波前解的存在性和稳定性。 首先,考虑了一类具有更一般非线性项的方程的波前解的存在性。主要方法是把方程的波前解的存在性转化为相应算子的不动点的存在性问题,然后利用Schauder不动点定理和上下解技术,在单调条件假设下证明方程波前解的存在性可以由一对适当的上下解来保证。作为应用,证明了媒介传染病模型波前解的存在性。 其次,研究了具有
不适定反问题在当今众多的科学领域中都有着广泛的应用,经典的正则化方法是针对这类问题设定的计算平稳解的有效方法和手段。但是在求解其大规模离散问题时,这些方法往往显得不适当,不充分——“捉襟见肘”。迭代法在数值计算中表现的特点,体现了它在求解这类问题时的卓越之处:计算过程中收敛快:矩阵不用被分割改变,甚至不用被表示,而仅以4和AT矩阵-向量乘积运算的形式出现;采用原子运算,方便进行并行计算。这些优点都
在这篇硕士学位论文中,主要考虑了一类带Dirichlet边值的退化椭圆型方程解的存在性与极大值原理,其中a(x)非负可测,在(?)的零测度闭子集上退化,可积性满足通过单调算子的办法得到在f∈Lp(Ω),1<p<2时,方程在H01,a(Ω)∩Lq(Ω)中弱解的存在性,通过分析带权Sobolev空间的性质,得到弱解的弱极大值原理.全文共分五章: 第一章,介绍这类退化模型的物理背景,研究这类问题
这篇学位论文利用非等谱Lax对,给出了一类具有形式的可积的非局部非自治非线性Schrodinger (NLS)方程的Darboux变换和精确解,包括单孤子解和双孤子解。
目的 获得表达发热伴血小板减少综合征病毒(SFTSV)N端糖蛋白(Gn)的重组人5型腺病毒(Ad5-Gn),鉴定其生物学特性及诱导产生中和抗体的能力。方法 利用AdEasy腺病毒包装系统,构建pAD-Amp-Gn表达载体,转染HEK-293细胞,获得重组腺病毒Ad5-Gn。用Ad5-Gn感染细胞,利用免疫荧光染色和Western印迹鉴定SFTSV Gn的表达水平;将Ad5-Gn病毒注射BALB/c
带有运输时间的在线排序模型是近代排序问题发展的新型模型.有很广泛的实际应用背景. 本论文主要研究了带有运输时问的在线排序问题,通过竞争比来分析判断算法的优劣性.对于带有运输时问的单个平行批处理机的在线排序.我们证明它的任何在线算法的竞争比都不会小于(?).并且提供了一个尽可能好的在线算法,对带有运输时间的两台平行批处理机的在线排序,我们给出了一个竞争比为(?)的算法.
非线性科学已经被广泛应用到各个学科,例如:生物学、物理学、化学、医学、经济学等等.这些学科中涌现出的大量的非线性系统使非线性方程以及精确解的研究等问题变得尤为重要.同时由于对称及守恒律的存在,对称性研究已经变成一个非常重要的课题. 在本文中,直接利用经典李群分析法来探讨两类发展方程的最优系统、约化方程以及精确解等问题.首先,将经典李群分析法应用到广义Caudrey-Dodd-Gibbon(
本文考虑矩形区域Ω={(x,y)|0<x<π,0<y<T}上的Laplace方程Cauchy问题,即利用边界y=0处的Cauchy数据来反演未知函数在Ω上的值。这类问题是经典的严重不适定问题,即问题的解不连续依赖于定解数据,且越靠近边界y=T处其不适定性越强。因此,给出有效的正则化方法来恢复解的稳定性不仅具有广泛的实际应用价值而且有重要的理论研究意义。本文重点是求解具有非齐次Neumann数据的L
本文主要运用变分法和临界点理论研究了两类脉冲微分方程边值问题解的存在性问题,通过选取合适的空间并构造适当的泛函,利用不同的临界点定理得到泛函临界点的存在性,从而建立了相应脉冲微分方程边值问题解的存在性准则. 首先介绍了本文研究问题的背景和出发点,以及目前的进展情况,给出了本文要研究的问题,主要结果与方法,和相关预备知识. 其次研究了如下脉冲微分方程Sturm-Liouville边值