论文部分内容阅读
无标记电化学免疫传感器同时发挥了无标记免疫分析的快速、简便的优点和电化学检测高灵敏的优势,逐渐发展成熟且在免疫分析领域已成为研究热点之一。纳米材料具有生物相容性好,比表面积大,高催化活性等优点。在电化学传感领域用作电极修饰材料,可以大大提高生物活性分子的固定量、生物活性和稳定性,进一步地提高检测灵敏度,提高生物传感器的分析性能。本论文制备了一些具有独特性能的纳米结构材料,将具有类过氧化物酶活性的材料引入到无标记电化学免疫领域,构建了一系列无标记电化学免疫传感器。根据电极材料的不同特性,设计了不同的无标记电化学免疫分析方法,实现了快速、灵敏、低成本肿瘤标志物检测。主要开展了以下几个方面的研究工作:(1)通过静电相互作用合成了还原氧化石墨烯包裹的聚苯乙烯纳米球(rGO@PS NSs),解决了石墨烯易团聚、分散性差等问题。所制备的rGO@PS NSs展示出优异的导电性、良好的亲水性、大的比表面积和高的抗体负载能力。利用链霉亲和素将其功能化后,用于固定生物素化的抗体。捕获抗体与抗原的特异性结合将在传感界面形成免疫复合物,在铁氰化钾/亚铁氰化钾(Fe(CN)63-/4-)检测体系中,该复合物会有效阻碍电子传递,从而引起电化学信号的减弱。利用电化学信号变化和目标抗原浓度之间的线性关系,可实现对抗原分子的快速无标记电化学检测。用甲胎蛋白(AFP)作为模型分析物,该无标记电化学免疫传感器展现了宽的线性范围(0.1-100 ng/mL)和低的检测限(0.03 ng/mL,S/N=3)。此外,该基于rGO@PS NSs的无标记电化学免疫传感器具有高的特异性、良好的重现性和稳定性,并且可用于临床血清样品中肿瘤标志物检测和癌症的早期筛查。(2)采用微波加热法合成了铂纳米粒子负载的还原氧化石墨烯包裹的聚苯乙烯纳米球(PtNPs@rGO@PS NSs)。通过在rGO@PS NSs表面负载PtNPs,进一步地提高了石墨烯的分散性,PtNPs@rGO@PS NSs也表现出更好的导电性、亲水性、大的比表面积和高的抗体负载能力。将PtNPs@rGO@PS NSs材料进行链霉亲和素功能化后,用于捕获生物素化抗体分子。在铁氰化钾/亚铁氰化钾([Fe(CN)6]3-/4-)检测体系中,抗原-抗体特异性反应形成的免疫复合物会阻碍电子传递,引起电化学信号下降。根据电化学信号下降和抗原浓度的线性关系,从而实现对目标抗原的灵敏检测。PtNPs的引入,显著增加了传感器的响应,提高了分析灵敏度。用癌胚抗原(CEA)作为模型分析物,该无标记电化学免疫传感器展现了宽的线性范围(0:05-70ng/mL)和低的检测限(0.01 ng/mL,S/N=3)。此外该基于PtNPs@rGO@PS NSs的无标记电化学免疫传感器展示出较高的灵敏度,宽的线性范围以及良好的选择性,并且成功应用于实际样品检测。(3)提出一种基于三维多孔铜@氧化亚铜(Cu@Cu2O)凝胶的无标记电化学免疫分析新方法。该Cu@Cu2O凝胶材料展现出高效的类过氧化物酶活性。在酸性介质中,Cu@Cu2O可以催化苯胺/过氧化氢(Aniline/H2O2)体系的苯胺聚合产生聚苯胺,可得到聚苯胺电化学信号。通过链酶亲和素将该Cu@Cu2O材料功能化后,将生物素化的抗体固定于该固相界面。抗原-抗体特异性反应形成的免疫复合物会抑制该催化聚合反应,从而引聚苯胺电化学信号强度降低。利用聚苯胺电化学信号的变化和抗原浓度之间的线性关系,可实现对抗原样品的检测。用糖类抗原125(CA125)作为模型分析物,该无标记电化学免疫传感器具有宽的线性范围(0.050-100 U/mL),低的检测限(0.022 U/mL,S/N=3)。该项工作为免疫分析检测提供了一种新的分析方法,也为肿瘤早期诊断等领域提供了新的检测平台。(4)以二价铁离子和2,5-二羟基对苯二甲酸有机配体通过水热法制备了一种铁基金属有机框架(Fe-MOF)材料,发现该Fe-MOF具有高效、稳定的类过氧化物酶活性。在苯胺/过氧化氢(Aniline/H2O2)体系,用该Fe-MOF为电极修饰材料构建了一种无标记电化学免疫传感器。Fe-MOF催化苯胺/过氧化氢(Aniline/H2O2)体系产生聚苯胺电化学信号。界面抗原-抗体特异性反应形成的免疫复合物会抑制该催化聚合反应,从而引聚苯胺电化学信号强度降低。利用聚苯胺电化学信号的变化和抗原浓度之间的线性关系,可实现对肿瘤标志物的检测。用糖类抗原125(CA125)作为模型分析物,该无标记电化学免疫传感器在0.050-140 U/mL范围内实现了对CA125的检测,检测限低至0.015 U/mL(S/N=3)。该基于Fe-MOF的无标记电化学免疫传感器实现了对肿瘤标志物的快速、廉价、高灵敏检测,并且成功应用于实际样品检测,可简便地用于癌症早期筛查与临床诊断,具备很好的临床应用潜力。(5)以四价锆离子和1,3,5-苯甲酸有机配体通过水热法合成了一种锆基金属框架材料MOF-808。所制备的MOF-808材料不仅具有很好的稳定性,在pH为中性的条件下同样展示出高效的类过氧化物酶特性。基于MOF-808材料,发展了一种无标记电化学免疫分析新方法用于检测肿瘤标志物。以MOF-808电极基底材料,链霉亲和素将其功能化后,捕获抗体构建无标记电化学免疫传感器。在对苯二酚/过氧化氢(HQ/H2O2)检测体系中,通过MOF-808催化反应底物对苯二酚产生电化学信号。特异性免疫反应形成的免疫复合物抑制了 MOF-808的催化,从而引电化学信号强度降低。利用电化学信号的变化和抗原浓度之间的线性关系,可实现对抗原样品的检测。用糖类抗原125(CA125)作为模型分析物,该无标记电化学免疫传感器展现了宽的线性范围(0.10-150 U/mL),检测限为0.043 U/mL(S/N=3)。此外,该基于MOF-808材料的无标记电化学免疫传感器具有高的特异性,良好的重现性和稳定性,并且成功应用于实际样品检测。(6)在室温条件下合成了一种Cu-MOF材料,并在其Cu-MOF表面原位生长金(Au)纳米粒子,得到Au@Cu-MOF复合材料。由于Au和Cu-MOF的协同效应,Au@Cu-MOF复合材料表现出更优异的电化学性能和更高的类过氧化物酶活性,可以放大电化学检测信号。基于Au@Cu-MOF复合材料,构建了一种无标记电化学免疫传感器用于检测肿瘤标志物。抗原抗体的特异性结合形成的免疫复合物抑制了 Au@Cu-MOF催化HQ/H2O2反应,从而引电化学信号强度降低。利用电化学信号的变化和抗原浓度之间的线性关系,可实现对抗原样品的检测。用糖类抗原125(CA125)作为模型分析物,该无标记电化学免疫传感器对CA125检测的线性范围为0.05-300 U/mL,检测限为0.02 U/mL(S/N=3)。提出的基于Au@Cu-MOF复合材料的无标记电化学免疫传感器,具有简单、超灵敏、低消耗等优势,为癌症大规模筛查提供了新思路和新平台。