方向场对齐的各向同性重网格化算法研究

来源 :清华大学 | 被引量 : 0次 | 上传用户:naughty009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以三角网格和四边网格为代表的多边形网格是一种常用的几何对象表示方式。数值分析、渲染、可视化等应用对网格质量提出了很高的要求。理想的网格在局部上应尽量各向同性,避免极端大角或小角,同时网格边应沿一定方向排布,以准确反映三维形状的几何和语义特征。基于质心Voronoi划分(Centroidal Voronoi Tessellation,简称CVT)的三角重网格化方法得到的网格各向同性质量高,但无法控制网格边方向。基于方向场指导的重网格化方法能够控制网格边方向,但牺牲了网格质量。本文提出了场对齐CVT(Field-aligned CVT,简称FCVT)重网格化方法,可以生成高质量的各向同性三角网格和准四边网格,且网格边方向可控。对三角网格,本文使用六次旋转对称(6-RoSy)方向场控制网格边方向。在传统CVT法能量优化框架下,本文增加了方向场对齐能量项,以使网格边对齐用户指定的方向场。为了获得网格表面任意点的场方向,本文提出了一种方向场插值算法,该算法能够保证插值方向场的连续性,而且插值结果与输入顶点上的代表性场向量的选取无关。最后,利用边翻转、边收缩和顶点分裂等局部编辑操作对输出网格进行优化,以进一步减少奇异点,提高网格质量。对于准四边网格,若仅将指导方向场替换为4-RoSy场,得到的准四边网格具有大量奇异点,网格质量较差。本文提出基于网格边-方向场匹配的拓扑优化算法,首先计算每个顶点处网格边与方向场的匹配,然后基于匹配信息构造中间网格,最后在中间网格上对奇异点进行识别和处理。实验结果显示,使用拓扑优化后,生成的准四边网格奇异点减少,网格质量得到提高。
其他文献
西伯利亚落叶松(Larixsiberian Ledb.)是我国西北地区特有的针叶树种,也是阿尔泰山分布最多的建群树种之一。针对新疆阿尔泰山特殊的地理位置以及相关研究较少的现状,本文利
人工林广泛被用于冀北地区的植被恢复。随森林生态系统服务功能日益受到关注,其造林过程中所发生的植被、环境变化也更为被人们所重视。本研究以冀北山地不同龄组油松人工林
随着近年来信息技术和物联网的快速发展,工业开始从自动化向智能化和网络化转变,信息化与工业化结合成为未来工控产业发展的必然趋势,随之,工控系统的安全隐患也在逐步增加。电力系统中应用了大量获取数据的技术以及通信设备,容易被恶意的攻击者利用,对国家造成不可挽回的损失。因此,开放式网络环境下的电力系统数据安全传输成为当前电力安全领域的重要研究方向之一。密码学中的数字签名作为保证信息安全最直观有效的技术手段
白草坪锶矿床位于滇西兰坪金顶铅锌矿田的南西部,是一个大型天青石矿床,并发育多层位、多类型的石膏,仅局部具少量铅锌矿化。但是,由于区内复杂多样的沉积组合、构造变形和多
语言是人类用来沟通的工具。尽管所有人都对它很熟悉,但我们的知识和文化直接影响着我们与他人交流的方式,因此不同的句子可能具有相同的含义。自然语言处理是专注于研究计算
二维的石墨烯材料凭借其优异的机械、光、热、电、力学性能,加上超大的比表面积,使其在检测、催化、微电子、信息和能源等诸多领域都有广泛的应用。自2010年石墨烯的发现者获
随着电子器件的微型化接近物理极限,面对日益增长的信息处理和存储要求,如何进一步利用电子的自旋属性成为当前自旋电子学研究的中心问题,而稀磁半导体将微观电子学与自旋相互作用相结合,同时利用电荷自由度和自旋自由度,实现存储和处理一体化的特点,使其成为了自旋电子学的主导材料,理想的稀磁半导体应具有高于室温的铁磁转变温度以及实现自旋和电荷的分离调控。本文首先通过基于密度泛函理论的第一性原理计算方法,对Fe掺
汽车轻量化技术对当今世界的节能减排尤为重要,热冲压工艺是汽车轻量化的重要手段,借助于热冲压工艺可以改变原始状态下的微观组织,提升抗拉强度,降低车身重量。目前,传统的热处理工艺只能增强硼钢的抗拉强度,可以有效抵抗变形,但伸长率低,缓冲吸能能力差,所以在保护人车安全方面存在些不足,但随着热冲压工艺的不断研究,具有性能梯度分布的热冲压工艺可以很好的解决这一问题。其原理是使同一块热冲压板料拥有不同的性能梯
页岩气是非常规天然气勘探开发的重点,水力压裂是其高效开发必不可少的技术手段。自支撑裂缝是页岩气水力压裂过程中形成的重要油气流动通道,导流能力是评价自支撑裂缝有效性
星球探测是研究地球的起源与演变、行星和太阳系的形成和演化的必要途径,研制一种稳定可靠且具备轻型化、智能化和功能多样化的空间采样技术具有重要意义。大自然中,啄木鸟体积较小,质量也仅60g左右,却能在5cm的加速行程内产生1000倍重力加速度以上的冲击加速度,而且啄木鸟的高频率、高强度、高冲击的啄击采样能力,对树干具有非常大的破坏力,极具仿生研究价值,可为星球自主采样系统和采样技术的研究提供新的思路。