硼、氮掺杂石墨烯作为锂-氧电池阴极材料的反应机理研究

来源 :江西师范大学 | 被引量 : 0次 | 上传用户:tjc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二次可充电有机体系锂-氧电池由于其极高的理论能量密度而受到广泛关注,是电动汽车的理想储能装置。然而,锂-氧电池的发展还正处于初期阶段,仍有诸多难题需要解决,其中,锂-氧电池阴极缓慢的动力学过程正是所需要面临的难题之一。这一问题涉及到两个基本反应,即氧还原反应与氧析出反应,为了解决这一难题,就必须对这两个反应的反应机理有一个清晰的认识。针对这一问题,本论文分别对锂-氧电池的氧还原过程和氧析出过程进行了细致的研究。首先,使用第一性原理方法,研究了不同浓度的氮掺杂石墨烯对氧分子还原的影响。结果表明:引入氮掺杂以后,石墨烯对氧分子的吸附能明显增强,氧-氧键的键长变长,表明氮掺杂石墨烯能够促进氧分子还原。电荷分析表明:掺杂的氮原子及吸附的氧分子均获得了来自碳原子的电荷,而且氮掺杂石墨烯能够使氧分子获得更多的电荷。通过对比不同浓度的氮掺杂石墨烯对氧分子的还原情况,发现氮掺杂浓度为3.13 at%时对氧分子还原效果最好。其次,通过第一性原理方法系统地研究了(Li202)nm+(n=1,m=0,1和n=2,m=0,1,2)小团簇分子的结构与电子性质,并计算了各种解离过程的反应能。体系结构的能量计算结果表明:(Li202)1的基态结构为低自旋态,而(Li2O2)2的基态结构为高自旋态。键长、分子轨道和态密度分析表明:氧-氧之间的相互作用在阳离子团簇中强于中性团簇,而锂-氧之间的相互作用在阳离子团簇中弱于中性团簇,这说明Li202阳离子团簇更容易分解。此外,反应能的计算结果表明:Li202单分子团簇更倾向于两步解离而不是一步解离。最后,预测了(Li202)2的解离反应路径:(Li2O2)2→Li2O2→(Li2O2)+→LiO2→O2。最后,通过第一性原理计算方法,从反应热力学和反应动力学的角度,细致地研究了中性分子及一价阳离子[(Li202)0,+]在本征石墨烯及硼掺杂石墨烯上的解离过程。结果表明:(Li202)0,+在本征石墨烯及硼掺杂石墨烯上更倾向于两步解离,超氧化锂为解离的中间产物;掺硼石墨烯对(Li202)0,+的解离具有更强的催化作用,而且,(Li202)+比(Li202)0更容易解离;(Li202+)G体系的速率决定步是氧析出过程,(Li2020)G、(Li2020)BG和(Li202+)BG体系的速率决定步是去锂过程。
其他文献
合理设计的奥氏体fcc相Fe-Pd形状记忆合金具有良好的形状记忆性能、力学性能,在学术以及应用领域都具有重要研究价值,目前,是材料领域研究的热点,有希望代替Ni-Mn-Ga而成为更加好的形状记忆材料。随合金的组分以及制备工艺不同,合金中的原子占位不同,能导致原子有序度不同,此时合金的磁有序方式也可能发生改变,最终导致马氏体相变结构发生改变,出现马氏体相的fct相和bct相,其中由fcc到fct这一
电致变色材料因其高效可逆、持久的光学属性及调变能力而受到广泛关注。制备变色速度快、循环寿命长的电致变色材料对发展新一代的高性能电致变色材料具有重要意义。多金属氧酸盐(多酸)是一类无机簇合物,以其多样的结构和独特的氧化还原性能在电致变色领域展现出了广阔的应用前景。经典的多酸通常可以实现无色到蓝色的可逆变化,将染料与多酸复合,可以提高多酸基材料的电致变色性能。本论文采用层接层自组装技术构筑了磷钨酸盐/
天然的大肠杆菌中,葡萄糖主要通过糖酵解途径(Embden-Meyerhof-Parnas Pathway,EMP)进行代谢。但是在丙酮酸到乙酰辅酶A的代谢过程中,会出现1/3的碳损失。为了减少葡萄糖在代谢过程中的损失,增强菌体的产物转化效率,我们构建了 EP-bifido途径。EP-bifido已经在聚羟基脂肪酸酯、甲羟戊酸(MVA)等产物的发酵中经取得较好的实验结果,但由于能量和还原力平衡未达到
论文从原理上调研了移动时窗法、相位差法、频率-波数域法、τ-p变换、短时傅里叶变换(STFT)、小波变换(WT)、S变换(ST)及广义S变换(GST)、Wigner-Ville分布(WVD)、伪Wigner-Ville分布(PWVD)、平滑伪Wigner-Ville分布(SPWVD)、希尔伯特—黄变换(HHT)提取频散曲线的优缺点。利用ST、GST以及WVD、PWVD、SPWVD方法对物理模拟数据
近年来,随着科学技术快速发展,各种高新产业对所需材料的物理性能要求越来越高,所以各种新型功能材料的研发也是迫在眉睫。拥有独特物理特性的Heusler合金逐渐进入人们的视线。Heusler合金具有高度有序的结构,而且蕴藏着多种特性和物理效应,例如铁磁性、半金属特性、热电效应、磁电阻效应、超导性、形状记忆效应等。因此,凝聚态物理和功能材料领域都对Heusler合金产生了巨大兴趣,期望获得具有独特应用价
随着产业快速升级所带来的新一轮工业革命及科学技术和经济的跨越式发展,污水重金属离子的处理问题逐渐凸显,尤其是排放不当引发水资源危机。铁基非晶合金近些年被发现是一种
本文研究了脂联素对鸡原代肝细胞、成肌细胞和脂肪细胞脂质代谢的影响及机制。通过外源添加重组脂联素蛋白和腺病毒过表达的方法,探究了脂联素对鸡脂质代谢的调控作用,旨在深入了解家禽的脂肪代谢调控机制,为改善家禽生产性能,提高饲料转化率和治疗肥胖等代谢疾病提供新的思路。试验一研究重组脂联素对鸡原代肝细胞脂质代谢的影响及机制。首先,用棕榈酸(饱和脂肪酸)和油酸(不饱和脂肪酸)预处理,探究重组脂联素梯度添加后对
20世纪以来,我国加快了城镇化建设的步伐,得天独厚的地理条件使得沿海和临江地区城市经济迅速发展,越来越多的大型建筑和高层楼房拔地而起。滨水地区地质条件复杂,建筑设计荷载重,基底压力大,基坑工程面临着巨大的挑战。尤其在水位较高的地区进行基坑开挖,若未适当的处理好地下水问题,就会发生如流砂、管涌或突涌等现象,甚至会引发工程事故。所以,基于滨水区这一特殊区域,本文开展了一系列的研究,从深基坑降水出发,结
由多主棒孢霉(Corynespora cassiicola)引起的橡胶树棒孢霉落叶病是橡胶树上一种重要的病害,在国际上被公认为为害橡胶树的毁灭性病害。目前关于该病害的研究主要集中在病原菌生物学、病害流行学、防治技术和毒素蛋白致病机理等方面,并根据该病原菌毒素蛋白可以划分7种不同类型菌株。据报道国内橡胶树棒孢霉落叶病菌主要存在Cas2和Cas5两种类型的菌株,但是近几年发现海南橡胶树棒孢霉落叶病在苗
帕金森病(Parkinson’s Disease,PD)是一种常见的神经退行性疾病,目前全世界有超过1000万的PD患者。PD的临床表现主要包括震颤、僵硬、运动缓慢和步态问题等运动障碍,同时还会