论文部分内容阅读
随着近代分子生物学实验技术和计算机技术的迅猛发展,以及人类基因组草图(HGD)绘制的顺利完成,标志着现代生命科学研究已经进入了后基因组时代,研究者把关心的焦点由结构基因组学转向了功能基因组学。基因芯片(genechip,microarray)作为一种新型的高通量的检测技术方法,可以同时测量成千上万个基因的表达水平,已成为“后基因组时代”研究基因与基因间相互作用的一个强有力的工具。
如何对该技术产生的海量实验数据进行准确而合理地管理和分析已成为是否能有效应用该项技术的主要问题,并决定着当前生物信息学的重要研究内容和主要研究方向。虽然目前已有许多学术性或商业化的微阵列系统软件应运而生,但具有全面解决方案的系统却尚属罕见,并时常会出现缺少实用性、可扩展性或标准界面等情况。另外,开发一种整合系统,往往需要一个统一、先进的软件架构来加强其安装和维护。所以,为满足上述需求,本课题在生物科学、微电子学以及计算机科学等学科相互交叉的基础上,提出了一个名为MDME的微阵列数据分析软件架构,此数据库拥有较完善的研制方案,可根据特定的实验环境、样本环境为用户提供全面的检索服务。
本文研究工作如下:
1.研制了该微阵列数据库系统的整体架构,在此基础上提出了数据库存储后端、用户验证、管理及访问控制模块、数据分析及其可视化模块、数据标注模块的实现方法。
2.在数据分析及其可视化模块的实现过程中,引入了一种新的聚类算法和一个用于分析multi-variable微阵列基因表达数据的通用3-D可视化工具,有效地提高了系统的分析效率。
3.开发并研制了一个基于关系数据库中persistence层的代码产生器ODBI,详细阐述了该代码产生器的数据模式结构、各组成模块、通信协议以及ODBI设计器的实现过程。
4.对ODBI代码产生器的运行状况进行评估,达到了预期的效果,并提出改进措施。
研究结果表明,该课题为用户提供了从数据存储、分析、解析到共享等一系列全面的服务,有效地避免了微阵列数据分析过程中的某些不连贯情况,从而帮助用户能够更快、更准确地得到相应的生物学信息。另外,系统中的ODBI代码产生器也很好地解决了我们在将面向对象编程与关系数据库进行关联时,两者处理对象不一致的矛盾,使系统可以在一个较高的层次上对关系数据表进行操作,增强了系统的通用性及可维护性。通过对基于生物信息学的微阵列数据库平台的研制和开发,为基因数据的存储、分析和结果的交流提出了一种更为广泛的方法,从而对基因芯片数据分析的发展起到了重要的推动作用。