论文部分内容阅读
群是现代代数学中重要的系统.群论研究不仅促进代数学的发展,而且对数论、密码学、拓扑学、理论物理及计算机技术等都有着重要的影响.在群论的众多分支中,不论是从理论还是实际的应用来说,有限群都占据着重要的地位.有限群论中Frobenius群的应用非常广泛,Frobenius群在置换群论和特征标论中也得到了很多的推广,它的定义有群作用形式、模形式、特征标形式等等.随着学者们对Frobenius群的深入研究,有限群论中人们对Frobenius群的推广也比较关注,Kuisch和Waall把Frobenius群的定义从群元素推广到群的p正则元素上,给出了 Frobenius群的p-模形式,并研究了相应的群结构.本文将Frobenius群的定义从群元素推广到群的π-元素上,由此给出了关于素数集π的广义Frobenius群的定义,并研究了相应的群结构.且得到了一些相关结果.取定一个素数集π.假设G传递作用在集合Ω={α1,α2,…,αn},n>1上,|CG(αi)|π>1对于任意i,且|CG(αi)∩CG(αj)|π=1对于任意j≠j.那么称G是一个关于素数集π的广义Frobenius群(简称广义Frobenius群),称此群作用为关于素数集π的广义Frobenius群作用(简称广义Frobenius群作用).在本文中我们主要证明了下述结果:1.设G是一个关于素数集π的广义Frobenius群并且G是π-可分群.那么G的任一π-Hall 子群H均是 Frobenius 群.2.假设G是一个关于素数集π的广义Frobenius群.如果G的π’-元素平凡地作用在集合上,那么G=M:H,其中M和H分别是G的π’-Hall和π-子群,并且H是 Frobenius 群.3.假定G是一个关于素数集π的广义Frobenius群.如果G的π’-元素无不动点地作用在集合上,那么G是一个Frobenius群,并且G=(K1 × K2):H其中K1 ×K2是 Frobenius 核,H是 Frobenius 补,K1 是一个π’-Hall子群,K2:H是一个π-Hall子群.4.假定关于素数集π的广义Frobenius群G作用在集合Ω上,H=CG(α),α ∈Ω.对于G的任意π-子群K,如果K与H的某一共轭Hg的交K∩Hg>1,g∈G,那么K是Frobenius群.