【摘 要】
:
偏微分方程在数学领域中是一类非常重要的方程,本文研究的波方程属于其中一类,它主要描述生活中各种波的振动现象.例如,声波、水波和光波等等.因此,研究这一类方程具有很大的实际意义和应用价值.本文主要通过伽辽金方法、能量方法、常微分方程理论、构造李雅普诺夫泛函等方法和理论研究了带有时滞和动力学边界条件的波方程解的存在性以及稳定性.本文研究了两类带有时滞和动力学边界条件的波方程解的性质.第一章主要介绍了带
论文部分内容阅读
偏微分方程在数学领域中是一类非常重要的方程,本文研究的波方程属于其中一类,它主要描述生活中各种波的振动现象.例如,声波、水波和光波等等.因此,研究这一类方程具有很大的实际意义和应用价值.本文主要通过伽辽金方法、能量方法、常微分方程理论、构造李雅普诺夫泛函等方法和理论研究了带有时滞和动力学边界条件的波方程解的存在性以及稳定性.本文研究了两类带有时滞和动力学边界条件的波方程解的性质.第一章主要介绍了带有时滞和动力学边界条件的波方程的研究背景与意义,以及研究现状.第二章研究了带有时滞和强阻尼以及动力学边界条件的波方程解的存在性和系统的稳定性,通过伽辽金近似和一些先验估计证明了解的局部存在性以及唯一性,利用能量扰动法、乘子法等得到了系统的指数稳定性.第三章研究了带有时滞和粘弹性阻尼以及动力学边界条件的半线性波方程,在记忆核函数更弱的条件下利用能量扰动法、乘子法等证明了能量的多项式稳定性.
其他文献
非线性偏微分方程解的性质的研究一直都是一个热门的研究课题.非线性偏微分方程解的适定性、稳定性等的研究对于自然科学和现实生活的研究都具有重大意义.本文利用偏微分方程理论、乘子方法、伽辽金方法、能量方法等理论和方法,对粘弹性波方程进行了研究,得到了解的局部存在性,稳定性和爆破.本文分三章.第一章,主要介绍了具有时滞的波方程的发展和本文将进行的研究工作.第二章,考虑了在动力学边界条件下,具有时滞,Kel
在这篇论文中,我们研究具有临界增长的非齐次分数阶拉普拉斯问题的多重正解的存在性.即研究问题:其中s ∈(0,1),(-Δ)s是分数阶拉普拉斯算子,Ω(?)RN(N>2s)是一个有界光滑区域,p=2s*:=2N/N-2s是分数阶Sobolev指数,g∈C0(Ω),g(x)≥0(x∈Ω),且在Ω中,g(x)(?)0,λ≥ 0,γ>0.本文首先使用单调迭代法证明了当λ∈[0,λ1)时(特征值λ1为算子(
非线性偏微分方程作为现代数学中的一个重要分支,来源于自然科学及工程领域中出现的理论或实际问题.随着对客观事实的分析,学者们将自然现象抽象为数学模型.Kirchhoff型方程作为非线性偏微分方程中重要的一类方程,其解的存在性一直受到学者们的广泛关注.本文通过变分方法,极小极大原理,截断技术以及迭代技术等方法讨论Kirchhoff型方程解的存在性.本文分为三章.第一章,我们介绍Kirchhoff型方程
非线性偏微分方程是研究的热点领域,它在力学、化学以及控制学等方面有着广泛的应用.有关梁方程的初边值问题已被许多学者研究过,他们主要研究了解的适定性和爆破等性质,为今后研究梁方程奠定了深厚的基础.受之前文献的启发,本文研究了带有动力学边界条件的梁方程的初边值问题(?)第一章主要介绍了非线性偏微分方程的物理背景,动力学边界条件、时滞和源项这些因素的具体应用,还给出了预备知识.第二章,给出所研究系统的等
具有非局部反应声学边界条件的波动系统是一类重要的非线性偏微分耦合系统,这类模型在实际应用研究中多用于噪声的控制和抑制研究.因此,研究此类模型的控制问题具有重要的实际价值和理论意义.其中有关PDE系统一致稳定性的研究是这分布参数系统控制研究中的一个重要研究方向.本文在第二章研究了具有非局部反应声学边界条件的波动系统在内部时滞扰动下的一致稳定性.通过乘子法以及不等式的缩放技巧最终获得了相应非线性系统能
随着科学技术的发展,非线性矩阵方程在电路网络,弹性力学,热传导,震动等领域作为基本模型有许多应用,同时还可以作为不少数值方法处理过程中直接或间接转换的部分之一.因此,非线性矩阵方程具有广泛的应用背景,关于方程的求解也越来越受到人们的重视.本文包括三章:第一章是绪论部分,介绍非线性矩阵方程的研究背景与研究现状以及本文所用到的主要引理和定义.第二章主要利用单调算子的不动点定理和正规锥的性质讨论下列类型
Schr(?)dinger-Poisson系统是物理学中被用来描述量子力学和半导体理论的基本方程,根据经典的物理模型,电荷粒子和电磁场的相互作用可以由薛定谔和泊松方程的耦合,此系统介绍了物理系统中的波函数随时间推移演变的过程.上述系统也经常出现在电磁波传播、光纤以及声学领域等诸多实际问题中.该系统在量子力学计算中得到了广泛的应用,对这些问题的研究将为非线性偏微分方程和变分理论的发展注入新的内容,创
分数阶微分方程在自然科学中发挥着重要的作用,成为了一个重要的研究领域,也受到了许多专家学者的青睐.在本文中,我们运用Banach空间中的锥理论及一些不动点定理,研究了三类分数阶微分方程边值问题,得到其正解的存在性,此外,还得到了正解的唯一性并给出了相应的唯一解收敛的迭代序列.本文分为四章:第一章是绪论部分,简述了研究的背景与意义,并简单介绍了三类分数阶微分边值问题的研究成果.在第二章中,考虑了下列
自然界中任何一个物种都不是独立存在的,而是与其他物种之间有着紧密的联系.趋化性就描述了细菌或者微生物受到环境中化学物质的刺激而产生的定向运动.基于这个现象,Keller和Segel于1970年构造了经典的Keller-Segel模型,并且该模型已被学者们从不同方面进行了大量的研究.本文主要研究以下运动依赖于化学物质信号的趋化模型(?)的解的全局存在性和长时间行为,其中Ω(?)Rn是有界区域且具有光
有向图在图论的研究中非常重要.而有向图的哈密尔顿圈问题及与其相关的很多问题,已经被广泛地研究了半个多世纪,并且取得了较为显著的成果.本文主要研究了平衡二部有向图在控制对度条件下存在哈密尔顿圈,在另外两类度和条件下存在哈密尔顿圈的极图,以及在控制对和被控制对度条件下是几乎二泛圈的.本文共分为四章.第一章介绍了有向图的一些基本概念以及研究现状,并提出本论文的主要内容.第二章研究了平衡二部有向图存在哈密