【摘 要】
:
太阳能蒸汽技术被用于海水淡化,不仅缓解能源的短缺,还能够提供清洁的饮用水。设计制备应用于经济高效稳定的太阳能能蒸汽技术的光热材料具有十分重要的科学意义和应用价值。优异的太阳能光热转换体系应该具备:1.高效光吸收和光热转换;2.有效的热管理;3.良好的水供给和蒸汽收集。为此,本论文以还原氧化石墨烯为光热材料,海藻酸钠/淀粉/碳酸钙三维气凝胶做隔热的支撑衬底,设计制备了铝箔/石墨烯/四氧化三锰和石墨烯
论文部分内容阅读
太阳能蒸汽技术被用于海水淡化,不仅缓解能源的短缺,还能够提供清洁的饮用水。设计制备应用于经济高效稳定的太阳能能蒸汽技术的光热材料具有十分重要的科学意义和应用价值。优异的太阳能光热转换体系应该具备:1.高效光吸收和光热转换;2.有效的热管理;3.良好的水供给和蒸汽收集。为此,本论文以还原氧化石墨烯为光热材料,海藻酸钠/淀粉/碳酸钙三维气凝胶做隔热的支撑衬底,设计制备了铝箔/石墨烯/四氧化三锰和石墨烯/聚乙烯亚胺复合膜两个体系作光热蒸汽转换材料,研究了两种复合膜的结构组成,系统探讨了光热转换性能和太阳能蒸汽产生效率,分析了其光热转换机理,取得主要研究结果如下:1)铝箔/石墨烯/四氧化三锰复合膜的制备及其光热性能。通过自沉淀法合成氧化石墨烯/四氧化三锰胶体,然后以铝箔为载体,制备得到铝箔/石墨烯/四氧化三锰(Al/RGO/Mn3O4)复合膜,以合成海藻酸钠/淀粉/碳酸钙三维气凝胶为隔热层,构建界面光热转换水蒸发器件。该水蒸发器件能够实现良好的光吸收、及时的水供应以及良好的热管理。Al/RGO/Mn3O4复合膜的吸光能力高达99%,在1 KW·m-2光照强度下,实现了1.65 kg·m-2·h-1的水蒸发速率,水蒸发效率可达90%,即使是在条件更加苛刻的海水中,在1 KW·m-2光照强度下,也能保持1.26 kg·m-2·h-1水蒸发速率,并且拥有良好的耐盐腐蚀性。同时,Al/RGO/Mn3O4光热转换复合材料在水蒸发循环试验中表现出良好的循环稳定性,20次海水循环试验中,整个体系的水蒸发速率基本保持稳定,为将来大规模应用提供了可能性。2)还原氧化石墨烯/聚乙烯亚胺三维气凝胶的制备及其光热性能。通过化学交联的方法制备还原氧化石墨烯/聚乙烯亚胺复合物,以合成的海藻酸钠/淀粉/碳酸钙三维气凝胶为隔热层,通过冷冻干燥技术构筑一体化光热转换水蒸发器件。该复合膜体系具备石墨烯吸光材料高的吸光性能,以及聚乙烯亚胺的高亲水性和三维气凝胶结构的延展性和高机械强度。通过三者的复合增强作用,使得该体系在一个太阳下光热蒸气速率为1.35kg m-2·h-1且光吸收能力高达95%。该结构的创新点在于将传统的双层结构(上层吸光层,下层水传输和隔热层)变成了一体化具有高可控性的三维气凝胶结构,可以通过优化气凝胶的结构来减少光的反射和折射,以此来最大化提高光的吸收效率。此外,三维气凝胶的微米亚微米结构使得海水中盐颗粒不会在孔道中聚集,故在高盐的海水下有稳定的太阳能蒸发速率。为一体化结构的光热蒸汽转换器件的设计提供了一种可行的方案。
其他文献
超级电容器一直作为研究的热点,在新能源储能领域表现出充放电功率大、循环稳定性高、环保等显著优势。然而,由于正极材料的综合电化学性能有待提升从而导致器件的应用受到了极大限制。近些年,过渡金属磷化物被证实能有效提升器件倍率性能以及拓宽应用领域。本论文采用一步水热法合成高导电性的Ni12P5纳米线并将其作为超级电容器正极材料进行电化学性能的研究,而且通过仿真结果分析该材料的导电及储能机制。此外,通过对过
烟草作为我国主要的经济作物之一,受到多种病虫害的侵染,给烟叶生产造成巨大的产量和经济损失,尤其是被称为烟草“癌症”的青枯病。为减少青枯病侵染对烟叶造成的损失,本研究致力于探索比化学药剂更为高效、对环境无污染、不产生抗药性、无毒且无害的生物防治方法——增效拮抗菌可湿性粉剂。本研究拟将抑制烟草青枯病的生防菌与抑制青枯菌的活性物质联合使用,研制成具有高效且操作方便的可湿性粉剂;通过盆栽和大田实验对增效拮
经济与科技发展的日新月异,近几年来自动驾驶技术成为国内外研究的热点。其中交通标志检测是自动驾驶核心技术之一;交通标志识别不仅能提高道路通行能力,预示道路状况,同时能减少交通事故,节约能源。因此,快速可靠的交通标志识别系统成为自动驾驶系统中至关重要的组成部分,然而真实环境中道路场景复杂多变,现有的交通标志检测与识别方法在实时性和准确性上仍具有提升空间。自从Alex Net在Image Net Cha
有机固态发光材料通常具有分子柔性、结构可调、成本低廉、色域宽等优点,因此广泛应用在有机发光半导体、生物成像、各种离子检测等领域。然而,有机荧光分子大多具有大π共轭体系,在稀溶液时具有较好的发光效果,在聚集态时由于自身的π-π堆积,导致非辐射能量跃迁占比增多,进而荧光减弱或者消失,这些严重阻碍了有机发光分子的应用范围。螺环分子由于自身的垂直立体结构,可增强分子刚性,提高材料的热稳定性,并且可调节分子
在过去的几十年里,全球淡水紧缺威胁着全世界的可持续发展和生态安全,如何以简单且高效的方式获取淡水已成为科学家们亟待解决的问题。雾,由大量悬浮在空气中的微小水滴组成,是一种不容忽视的淡水资源,特别是在干旱和半干旱地区。因此,从空气中收集雾水对于缓解这些地区淡水危机具有重要意义。在自然界,许多动植物进化出了特殊的表面结构和化学来收集雾水以求生存,例如甲壳虫背部交替的疏水、亲水突起,蜘蛛丝上周期性的纺锤
近年来,随着人工智能、云计算等新兴科学技术的不断发展,对于信息存储能力的需求日益提高。为了提高存储器的密度,器件的尺寸不断微缩,3D高密度存储器技术逐渐成为研究热点。存储器以十字交叉阵列的方式堆叠可实现理论上最高的集成密度,因此它成为大规模存储集成的首选方案。然而,十字交叉阵列结构中存在的串扰电流问题将严重影响器件的性能,并可能造成信息误读。存储单元串联一个选通管的结构(one-selector
二氧化氮(NO2)是最常见的空气污染物之一,也是疾病常用标志物,实现二氧化氮超低检测是一个研究热点。因此,开发针对二氧化氮的高灵敏传感材料及传感器,是二氧化氮气氛检测中亟待解决的难题。基于金属氧化物半导体材料的气敏检测方法具有结构简单、制备工艺成熟、稳定性好及成本低廉等优点,被广泛应用于气体传感检测领域。检测可概括为两个过程,第一个过程是感知过程:传感器材料的活性位点与特定的气体分子相互作用进行电
癌细胞会对其新陈代谢进行重新编程,以支持其快速生长和增殖的需求。这种代谢重编程是多种癌症的标志,而其中最早发现的代谢重编程表现为葡萄糖摄取的增加;同时,即使在线粒体功能正常和氧气充足的情况下,癌细胞也会加速糖酵解到乳酸的生成,这种现象被称为“Warburg效应”或有氧糖酵解。这种代谢重编程为癌细胞提供了ATP和生物合成的基础,包括中间代谢物、核苷酸、蛋白质和膜成分的生物合成。由于癌细胞严重依赖有氧
新鲜的饮用水是人类的基本需求。尽管现代技术极大地提高了饮用水的供应效率,但水资源危机仍然危害着世界各地人们的生存,尤其是在不发达地区。在那些雾水比雨水丰富的干旱地区,水雾收集是一种潜在的获取淡水的方法,这对于生活在那些地区的人们来说至关重要。自然界中天然存在的纳米布沙漠甲虫、蜘蛛丝和仙人掌刺的水雾收集能力已经极大地激发了仿生水雾收集技术的发展,但是单个生物水雾收集的效率还远远不是最优的。研究表明多
禾谷镰刀菌是一种引起小麦患赤霉病的主要病原真菌,侵染小麦麦穗后会分泌脱氧雪腐镰刀菌烯醇(DON)和玉米赤霉烯酮(ZEN)等真菌毒素,使小麦的产量和品质降低。目前,防治小麦赤霉病的主要手段是加强田间管理、培育抗性品种、使用化学农药以及采用生物菌剂进行防治等。但因抗性品种的培育需要的周期长,化学农药容易导致抗药性,加大用量会增加污染环境。因此,生防防治病害的研究和应用越来越受到人们的青睐。本实验以湖北