关于最大亏格与其它不变量

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:windplume
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
图在曲面上的嵌入起源于地图着色定理的证明.这里,曲面S就是无边缘的紧2-维闭流形,分为可定向曲面与不可定向曲面.连通图G在曲面S上的2-胞腔嵌入,简称为嵌入,是指存在一个1—1连续映射φ:G→S使得S-φ(G)的每个连通分支都同胚于一个开圆盘.图G的最小亏格,γ(G),就是最小的整数n使得图G能嵌入到亏格为n的可定向曲面Sn.图G的最大亏格,γM(G),就是最大的整数n使得图G能嵌入到亏格为n的可定向曲面Sn.1966年,Duke[12]得到了可定向曲面嵌入的插值定理:若图G可嵌入到可定向曲面Sn和Sm(n≤m),则对任意的整数g,n≤g≤m,图G可嵌入到可定向曲面Sg.因此,图G的最大和最小亏格确定了图G能嵌入的全部可定向曲面.相似的,可定义最大不可定向亏格和最小不可定向亏格.关于图G的最大不可定向亏格(γ)M(G),刘彦佩教授[36],Ringel以及Stahl分别独立地证明了   (γ)M(G)=ε(G)-v(G)+1.   于是,我们只需考虑图在可定向曲面上的最大亏格.   因为图G在任意曲面上的嵌入至少有一个面,由Euler公式易得γM(G)≤[β(G)/2].   其中,β(G)=ε(G)-v(G)+1称为图G的Betti数;[x]表示不超过x的最大整数.若γM(G)=[β(G)/2],则称图G是上可嵌入的.   本论文主要结合图的一些不变量,如最小度,围长,顶点数,独立数,顶点的度和等,研究了图的上可嵌入性以及图的最大亏格的下界,并给出了非上可嵌入的3-正则图的结构特征.具体分为以下七章.   第一章,首先对图在曲面上嵌入的研究背景及发展作了简单介绍.其次,给出了图论的一些基本概念和术语以及图的最大亏格的一些基本性质.   第二章,结合图的最小度和围长,从研究图的给定子图的顶点数出发,我们得到了图的上可嵌入性与顶点数之间的关系.   第三章,结合图的最小度和围长,给出了非上可嵌入连通图的最大亏格的新下界.   第四章,结合图的围长,从研究图的给定子图内相邻顶点的度和出发,得到了图的上可嵌入性与相邻顶点度和的关系.   第五章,结合图的最小度和围长,从研究图的给定子图内独立数,非相邻顶点的度和出发,得到了图的上可嵌入性与独立数,非相邻顶点的度和之间的关系.   第六章,研究了非上可嵌入的2-边连通3-正则图的结构,补充了文献[28]中关于上可嵌入的2-边连通3-正则图的结构.   第七章,提出了一些进一步研究的问题,如计算图的最大亏格嵌入的个数,研究图的相对最大亏格,应用联树方法研究图的最大亏格等.
其他文献
调和分析作为数学的一个重要分支,有其深厚的历史背景和丰富完善的理论体系,在数学的诸多领域中有着广泛的应用,而具有半个多世纪发展的奇异积分理论在调和分析中有着十分重要的
在传输问题、应用概率、迁移理论等学科中经常遇到一类矩阵方程一非对称代数Riccati方程,特别地,来源于传输问题的该方程的系数矩阵具有特殊结构。在实际应用中,人们关心的是
学位
企业档案管理经历了从数字化到信息化发展的历程,近年来随着档案管理信息化的深入发展,档案管理知识化的研究成为热门的课题。   档案管理是一项专业性很强的业务工作,数字化
随着信息技术的不断发展,图像数据呈现出几何级数的增长趋势。那么如何从海量的多媒体数据库中按照内容检索到用户真正需要的数据就成为一个热点问题。目前,基于内容的图像检
本文研宄具有混合边值的非线性椭圆问题的刘维尔型定理和带Hardy项的临界分数次椭圆问题解的存在性,全文分为三章。  在第一章中,介绍了研宄背景和主要结果。  在第二章中,
代数表示论是上世纪七十年代初兴起的代数学的一个新的分支,它的基本内容是研究环与代数的结构。在三十多年的时间里这一理论有了异常迅猛的发展并且趋于完善。   对于正
学位
约束矩阵方程问题是指在满足一定约束条件下的矩阵集合中求矩阵方程(组)的解.约束条件不同,或矩阵方程(组)不同,则得到不同的约束矩阵方程问题.约束矩阵方程问题是近年来数值代数
广义线性模型是经典线性模型的自然推广,它是一类应用广泛的统计模型,本文在很弱的条件下证明了一般联系函数广义线性模型的极大拟似然估计的弱相合性,改进了文献中的结果:并通过