论文部分内容阅读
Web服务作为一种自治的、开放的以及与平台无关的网络化构件,可使分布式应用具有更好的复用性、灵活性和可增长性。Web服务是独立的、模块化的应用,能够通过互联网来描述、发布、定位及调用。而服务质量是判断用户是否获得满意服务的主要因素。Christian Gronroos根据认知心理学的基本理论,提出了顾客感知服务质量的概念。他认为感知服务质量是顾客对服务期望与实际感知的服务绩效之间的比较,即当实际服务绩效大于服务期望时,顾客感知服务质量是好的,反之亦然。Christian Gronroos还指出,服务质量由功能质量和技术质量组成。用户在提出请求服务时,不但对服务功能提出了要求,而且对服务质量也有一定的期望。好的服务质量能提升用户的满意度,不低于用户对服务功能和质量期望的服务都是用户满意的服务。服务质量将是判断服务提供者是否成功的重要因素,它将成为服务的重要卖点和区分点。如何提供可区分的服务,如何为用户提供有质量保障的服务,以及如何让用户获得满意的服务都是服务计算的重要课题。根据Gronroos感知服务质量理论,满意的服务不只是一个技术问题,更是一个心理学问题。因此服务质量直接关系到用户是否获得了满意的服务。虽然现有的服务发现、选择、组合、推荐和主动服务等技术也重视服务质量的研究,但还存在以下一些不足:一是服务质量有哪些维度的问题;二是对服务质量各维度研究不深入;三是在服务质量维度中侧重于技术层面因素而忽略了心理层面的因素。本文在感知服务质量的启发下,尝试在服务质量中引入心理学要素,研究如何为用户提供满意的服务。主要工作包括:1.提出了一种基于QoS的多Agent协同服务模型现有的服务模型以满足用户的功能需求为主,而忽视了用户的服务质量需求。基于该现状,提出了一种基于QoS的多Agent协同服务模型。在模型中主要突出了:基于用户兴趣的个性化推荐、QoS匹配和管理Agent。它们都以服务质量为中心,确保用户获得满意的服务。在模型中,还重点刻画了服务功能匹配的语义,作为后继研究的基础。2.提出了一种Web服务的感知服务质量计算方法。传统的服务质量计算主要是从技术角度进行分析,没有考虑用户的心理因素。而本文提出的Web服务的感知服务质量计算方法,参考了Gronroos感知服务质量模型,使QoS中包含了心理学要素和市场经济学要素。在计算QoS时考虑了三个方面的因素:技术方面、服务提供者方面和服务请求者的心理因素。主要研究了QoS的时间、安全性、可靠性、信任和价格等维度。其中,时间、安全性和可靠性等由网络状态决定;价格则是最能体现市场经济的因素;而信任具有强烈的心理学色彩,带有主观性。最后给出了基于认知心理学的Web服务感知服务质量的加权平均计算方法。感知服务质量是服务发现、服务推荐和服务选择等的直接依据,是判断用户是否获取满意服务的主要标准。3.给出了一种QoS驱动的服务组合化简算法。随着用户需求的不断增长,单个服务已经不能满足用户更深层次的复杂需求。将多个服务组合成一个组合服务,可以满足用户更多更复杂的服务需求,同时也为服务提供者创造了新的商机。复杂服务的服务组合一般很复杂,怎样有质量保障地进行服务组合则是一个关键问题,它直接涉及到该组合服务是否是用户满意的服务。传统的服务组合化简方法在考虑时间复杂度的同时忽略了服务质量。本文在研究了服务组合时的逻辑关系和数据关系的基础上,给出了服务组合的逻辑语义和服务组合的数据语义。在数据关系中,一个重要的数据关系是服务组合时的QoS数据关系,即服务组合时的服务质量约束满足条件。最终提出了一种QoS驱动的服务组合化简方法。该方法以QoS值为参考,有质量保障地对组合服务进行剪枝,无需对复杂路径组合服务进行化简和合并,因而具有较好的时间效率。4.提出了一种基于用户兴趣的个性化推荐方法。传统的服务推荐算法带有盲目性,没有针对用户的个性化特征。不管用户是否喜欢,无论用户是否感兴趣,都以广告的形式进行推荐,命中率低,服务质量差。Mizzaro认为,个性化服务是系统收集和存储用户的使用信息,并分析这些信息得到用户的特定兴趣和需求,然后在合适的时间向每一位访问者发送正确的信息。个性化主要体现在系统针对不同的用户提供不同的服务方式和自动搜索并主动向用户推荐用户最需要和最感兴趣的服务。个性化服务系统的目的是利用用户兴趣模型提供更有针对性的个性化服务,产生最符合用户需求的服务列表。本文提出了一种基于用户兴趣的个性化推荐方法,根据同模式用户兴趣模型进行推荐,因为具有相同兴趣模式的用户对同一资源感兴趣的可能性比较大。在对用户进行同模式判定时,主要考虑了权重、个人行为指数和遗忘因子。实例证明,基于用户兴趣的个性化推荐可以帮助用户发现可能感兴趣的新资源,并培养和发展用户新的兴趣主题,而不局限于用户的现有兴趣和已经感兴趣的资源主题。因此,用户兴趣模型是服务推荐的前提,是个性化服务的基础,直接涉及到服务的质量。总之,本文在感知服务质量模型的基础上,构建了服务模型,并对感知服务质量计算、服务组合化简和个性化推荐方法进行了研究,同时提出了Web服务的感知服务质量计算方法、QoS驱动的服务组合化简算法和基于用户兴趣的个性化推荐方法。本文将感知服务质量应用于Web服务,探索服务过程中的服务质量问题,研究如何为用户提供满意的服务,具有一定的理论和实践意义。但是本论文的研究只是个开端,作者将以此为基础做进一步的深入研究。