论文部分内容阅读
GaN是一种十分优异的宽带隙Ш一V族化合物半导体材料,是当前世界上最先进的半导体材料之一。室温下,GaN的禁带宽度为3.4eV,是制作光电子器件,尤其是蓝、绿发光二极管(LEDs)和激光二极管(LDs)的理想材料。这类光源在高密度光信息存储、高速激光打印、全色动态高亮度光显示、固体照明光源、高亮度信号探测、通讯等方面有着广阔的应用前景和巨大的市场潜力。此外,GaN也是制作高温、高频、大功率器件的理想材料。进入90年代之后,随着材料生长和器件工艺水平的不断发展和完善,一些突破性技术的实现使GaN材料的研究空前活跃,GaN己经成为世界各国争相研究的热点。目前,金属有机气相沉积(MOCVD)、分子束外延(MBE)和氢化物气相外延(HVPE)等方法己经成为制备GaN的主流工艺,其中MOCVD使用的最为广泛。采用上述方法制备GaN,工艺复杂,设备昂贵,限制了GaN材料的制备、生产和应用。现在,国际上有许多科研机构正在探索新的工艺方法,试图在合适的衬底上制备高质量的GaN薄膜。目前GaN基器件大多数制作在蓝宝石衬底上。由于蓝宝石价格昂贵、衬底自身绝缘且硬度大、器件工艺复杂、制作成本费用高,且由于它导热性能差,不利于大功率器件的制作,硅衬底则可以弥补这些不足。因此,开展Si基GaN薄膜材料的外延生长意义重大。虽然以Si为衬底的六方GaN材料的生长有一定难度,但由于其晶体质量高、价格低廉、易解理、导电性好和成熟的Si基集成技术等优点,成为蓝宝石衬底强有力的竞争者。本文介绍了采用氨化磁控溅射Ga2O3/Ta薄膜的方法在硅衬底上合成了GaN纳米结构的方法。并以扫描电镜(SEM)为主,结合透射电镜及高分辨电镜、X射线衍射、红外吸收等手段,研究了纳米线的形貌、显微结构、成分等,并对其生长机制进行了初步探索。研究了不同的氨化温度、不同的氨化时间和不同中间层厚度对GaN纳米线的影响。首先我们利用磁控溅射系统先在Si衬底上制备Ga2O3/Ta薄膜,然后在氨气氛围中退火制备GaN纳米结构。测试结果表明:合成的纳米结构为六方纤锌矿结构的GaN;氨化温度、氨化时间和Ta薄膜的厚度都对一维GaN纳米结构的结晶质量和形貌产生很大的影响。随着氨化温度的升高,GaN纳米结构的直径先减小并有棉絮状晶体生成,后来直径又增大且表面趋于相对光滑;纳米结构的结晶质量也逐渐提高。其中,退火温度为1000℃时,样品的结晶质量和表面形貌最佳。但是,当温度继续升高(高于1000℃),氮化镓纳米线的数量会减少并且结晶质量也会下降。从氨化时间上看,10min所得结果相对较好。另外选用不同的中间层厚度,发现得到的纳米结构形貌各异,说明中间层的厚度对一维GaN纳米结构的合成也有很大的影响。GaN纳米结构的生长机制可初步归结为气体—液体—固体(VLS)生长机制,其中高温下Ta薄膜在高温下会破裂并会在Si衬底上形成纳米液滴,对GaN纳米线的生长起到重要作用。