论文部分内容阅读
为了进一步地提高永磁同步直线电机的速度响应和稳态精度,发挥直线电机具有的高精度、高效率、响应速度快的特点。设计了一套直线电机的驱动硬件平台和软件控制系统,主要基于矢量控制、空间矢量脉宽调制,并使用了改进的电流PI控制器和非奇异Terminal滑模控制算法,在稳态性能和动态响应的指标上达到了很好的效果。首先在比较双边型无铁芯永磁直线同步电机和单边型有铁芯永磁直线同步电机的基础上,对有铁芯电机所存在的推力波动现象分析产生的原因并给出了仿真结果。同时介绍了两相旋转坐标系下永磁同步直线电机的数学模型,为后文控制策略仿真和实现提供基础。矢量控制技术和空间矢量脉宽调制技术是该驱动系统的控制算法基础,通过模型建立和理论分析介绍了 SVPWM技术和矢量控制的原理。同时针对数字信号处理器DSP所存在的一拍延迟,通过改进的PI电流控制器改善一阶滞后效应;采用抗饱和积分PI控制器改善三闭环结构下的位置响应;采用一种改进的非奇异Terminal滑模控制对速度外环和位置环进行改进,Matlab/Simulink仿真结果验证了提出方法的有效性,速度响应和动态特性优于传统的PID控制。设计搭建的永磁直线同步电机的伺服控制系统硬件平台主要包括:以TMS320F2812为控制器的控制板、DIP-IPM驱动板、信号检测和信号隔离电路等外围电路。软件算法包含模块有:主程序模块,中断服务子程序模块。同时介绍了 AD采样校正方法;CAP中断程序光栅信号处理;基于脉冲计数的数字测量方法,以及数字滤波在速度检测中的应用。最后,为了验证整套控制系统实际的运行效果,给出了各种运行状况下的实验波形和测量结果。结果表明:所采用PI控制器改进可以改善电流响应;所用Terminal滑模控制对于动态响应的速度和精度均有所提高,充分体现了控制系统设计的有效性,为后续的研究奠定了基础。