Cn中几个全纯函数空间上的Gleason问题和复合算子

来源 :湖南师范大学 | 被引量 : 0次 | 上传用户:luowanda
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本论文研究了多复变全纯函数空间上的几个问题。全文由四章组成。   第一章,主要对全纯函数空间上一些问题的历史背景与主要结果进行综述。   第二章,证明了Gleason问题在Cn中分别以单位球和多圆柱为支撑域的函数空间βμ(B)和un上是可解的。   第三章,探讨了Cn中以单位球为支撑集的μ-Bloch上的一种积分算子Tψ,g为有界算子和紧算子的条件,并给出了充要条件。   第四章,讨论了超球上几个典型函数空间上的加权复合算子的有界性和紧性条件,并借用Finsler度量给出了充要条件。
其他文献
在小学英语教学中,特别是到了中高段,由于学习难度的增加、学习方法和态度上的差异,个人兴趣爱好的不同等原因造成学生英语水平上的差异日益显著,英语学习后进生不可避免的出
学位
想做最好的老师,是每一位当老师的愿望,但是,如何实现这个愿望呢,如何做最好的老师呢?关键在我们自己.“君子治其内,不治其外.”我们教师应该努力提升自我,修炼教师之贤,做最
期刊
随着我国工业的飞速发展,煤化工行业也开始逐步发展壮大起来,随着科学技术的不断进步,越来越多的技术工艺应用道路煤化工行业中,与此同时,压缩机等新型机械的应用也在很大程度提高
本文所讨论的是一类出现在半导体器件中的流体动力学模型,  首先,运用能量估计的方法讨论了在相应边界条件下一维单极非等熵半导体方程稳态解的零电子质量极限和松弛时间极限
电力系统中存在许多不确定因素,参数的不确定、随机性的干扰、时滞的变化等都给系统的稳定性带来巨大影响。研究受不确定因素影响后系统的稳定性机理,对保证电力系统的安全运行具有重要意义。本文在电力系统稳定性分析中几个常见的确定性模型的基础上,建立了更加符合实际的带有高斯小激励的随机模型、区间时变时滞模型和不确定随机时滞模型。利用电力系统稳定性研究思想及数学学科中稳定性理论、随机微分方程等相关方法分析了随机
变分不等式问题是现代数学领域中较重要的一个问题,具有较强的实用性。作为特殊情况,最优化问题和互补性问题可以归结为此类问题进行求解。在众多求解此类问题的算法中,由Gol
随着近代物理学和应用数学的不断发展,各种各样的非线性问题日益涌现,极大的促进了非线性泛函分析向着更加成熟的方向发展.非线性脉冲方程是非线性泛函分析研究的一个重要的分支
本文主要研究三类二阶脉冲微分方程正解的存在性。  首先研究了一类带积分边界条件的二阶脉冲微分方程的三个正解及其应用。通过应用Leggett-Williams不动点定理,证明了该问
最近读老一辈无产阶级革命家薄一波同志撰写的回忆录《七十年奋斗与思考》一书,其中关于抗日根据地太岳区保障人权工作的一段历史记录,引人入胜,给人启迪,弥足珍贵。当时薄一