0.18μm高压BCD中的可集成高压器件优化设计

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:zyj3221
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
0.18μm BCD工艺主要用在小尺寸的直流/直流和交流/直流转换等领域,是目前应用于消费电子以及汽车电子等领域主流的BCD工艺之一,具有器件类型丰富,导通电阻低,成本经济等特点。随着功率市场的不断发展,基于成熟工艺的电压扩展可以帮助设计者以较低的研发成本扩大工艺平台的应用范围从而拓展市场,成为了目前BCD工艺迭代升级的发展方向之一。可集成功率器件LDMOS是BCD工艺中的核心器件之一,在功率集成电路中主要完成电平位移、功率变换以及功率驱动等功能。为了实现优异的功率集成电路性能,LDMOS器件需要在满足高耐压的同时,尽可能地降低其导通电阻以及提高开关频率,但是高耐压与低导通电阻往往会构成矛盾关系,是LDMOS设计中的重点和难点。本文的主要工作内容如下:首先,对低侧NLDMOS的结构以及工作机理进行阐述说明,并对其进行仿真优化设计。对于低侧NLDMOS,对其栅场板长度,包括栅Poly场板、栅金属1场板以及栅金属2场板,在分析各场板的作用以及优缺点后,得出了一种比较优化的场板分布,大幅度提高了器件的关态耐压;也对器件中纵向的NPN RESURF注入进行了仿真优化,NPN RESURF注入包括Ntop、Pbury和Nbury三个层次,本文对该三个层次的注入能量和注入剂量均进行仿真优化,得出了较优化的注入组合,在满足关态耐压的情况下,进一步降低了器件的比导通电阻;还通过优化器件Buffer区的剂量和能量,在基本不影响器件关态耐压和比导通电阻的情况下将器件的开态耐压提高到了200V以上。其次,对高侧NLDMOS的结构以及工作机理进行阐述说明,接着针对浮动盆对地以及高侧NDLMOS自身的ESD防护性能做了优化设计,之后探讨了其与现有工艺的兼容性,并通过仿真优化其器件性能,对后续工艺的改进具有一定的指导意义。最后,展示分析了本课题中的基本工艺流程,并基于低侧NLDMOS以及高侧NLDMOS管的仿真结果与0.18μm BCD工艺流程设计了相应的版图结构,其中低侧NLDMOS管的版图包含4种类型,高侧NLDMOS管也包含4种类型,在此基础上还设计了一些特殊的版图结构。
其他文献
随着电子信息设备产业不断向小型化、高频化、集成化方向发展,其对电子材料的性能提出了更高的要求。CaMgSi2O6(CMS)微波介质陶瓷因具有较低的介电常数(εr~7.46)和较高的品质因数(Q×f~59638 GHz),非常适合应用于微波通信,极低的介电常数使其成为制备微波基板的理想材料,因而受到了国内外的广泛关注。但其过高的烧结温度很大程度上限制了它的实际应用。近几年,大量经过改性的具有优异微波
太赫兹波是一种处于远红外与毫米波之间的电磁辐射,其频率范围为0.1THz至10THz,波长在308)~38)8)范围内,同时其也具备诸多优越的性质,在很多领域中有极其重要的研究意义。太赫兹辐射源是太赫兹波快速发展的阻碍因素之一。因而研究发展太赫兹辐射源相关技术以及新机理成为科学家们的当务之急,掌握发展高功率太赫兹辐射源的关键技术成为太赫兹波在军事领域和民用方向的广泛应用的关键。带状注扩展互作用速调
太赫兹(Terahertz,THz)波一般来说是指波长范围大约在0.03毫米到3毫米内,频率大约在0.1太赫兹到10太赫兹内的电磁波,又可以称为亚毫米波、太赫兹电磁波、T射线。由于在电磁波频率谱中的位置在毫米波与远红外之间,太赫兹波不仅透射能力高、能量低,而且具有瞬态特性、吸水特性以及相干特性等独特的物理属性,因此在通信、雷达、食品安全、公共安全等领域有重要应用成果和前景。太赫兹辐射源的发展是太赫
随着电子设备、电力系统、车载雷达及5G通讯突飞猛进的发展,高度集成化与小型化成了电子元件发展的必然方向。低温共烧陶瓷(LTCC)技术因其对电子系统小型化和混合集成的高要求而受到先进产品的青睐。应用在LTCC各种技术中的固体介质烧结材料通常都被认为是具备较低烧结温度、相对较小的介电常数(εr)、低介质损耗(即高Q×f值)以及趋近于零的谐振频率温度系数(τf)。鉴于LTCC技术应用材料需于较低温度下烧
横向功率MOSFET因其具有开关速度快和便于集成等优点,在功率集成电路领域占据重要地位。功率器件中存在一个重要的折中关系,即比导通电阻与击穿电压之间的折中关系。对于横向功率MOSFET而言,高的击穿电压往往需要通过设置长的漂移区来实现,而长的漂移区又会导致器件的比导通电阻的增大,从而增加功率MOSFET本身的功耗。因此提出不同的器件结构及理论来改善器件击穿电压与比导通电阻之间的折中关系一直以来都是
未来的技术发展趋势主要包括物联网(IoT),机器学习和人工智能(AI)等等。这些年,随着CMOS技术的发展与进步,数字处理能力已经得到了很大的改善。其主要表现为速度提高、面积减小和功耗降低。但是,作为连接模拟域与数字域必备的模块——模数转换器(Analog-to-Digital Converter)依旧处在设计瓶颈期中。传统ADC无法通过新颖的校准方法提高精度。而随着集成复杂度的提高,典型的应用对
当今,随着现代微电子技术的发展,电子类产品在生活中的作用越来越多。电源管理芯片(Power Management Integrated Circuits,PMIC),作为电子产品的重要部分,与电子科技的发展密不可分。Buck路作为PMIC中DC-DC变换器的重要结构,在近年来广受关注。随着芯片集成度的不断提高,多相Buck变换器因它功率密度更大,应用环境更加宽泛灵活,是现在PMIC领域内研究的热点
由abelian范畴构造的Ringel-Hall代数是由Ringel首先引入的,并应用于Dynkin quiver的表示范畴,Ringel使用Hall代数方法实现了半单李代数的正部分。彭联刚和肖杰通过导出范畴的二周期轨道范畴使用Hall代数方法整体实现了任意型的Kac-Moody李代数,他们的方法也适用于由导出范畴产生的其它类型的无限维李代数。另一方面,Lusztig等对于quiver表示范畴建立
印制电路板是电子产品信号传输的基础承载体。在通信领域,高频信号传输的趋肤效应对第五代移动通信技术的信号完整性提出了挑战。控制印制电路板内层表面的表面粗糙度是控制多层印制电路板层间结合力的技术手段之一。粗糙表面有利于层间结合力提升,但在趋肤效应的影响下粗糙的表面不利于印制电路上的高频信号传输。因此,研究适用于高频信号传输的印制电路内层铜面处理技术是目前行业关注的热点之一。这对于新一代电子产品的开发具
随着移动端的兴起和5G时代的到来,智能驾驶、短视频、直播、游戏等兴起导致当前数据流愈发庞杂,对数据的存储提出了更高的要求,包括数据存储的读取写入速度快,成本低,响应快,功耗越低,移动端设备对数据存储单元的面积要求也更为严格。此前,大量商用存储器,例如静态随机存取存储器,尽管读取速度快功耗低,但有成本高、面积大的缺点;动态随机存取存储器成本低廉集成度高,但数据易失且读取速度慢;闪存功耗、成本低,然而