【摘 要】
:
随着物联网应用与规模的持续增长,同时带来了空前的网络安全威胁和安全风险。对此学术界提出利用威胁情报来对日趋复杂的安全问题进行预警和预测,威胁情报作为一种网络安全大数据,可以有效帮助防御者更好地提升网络安全防护能力[1]。在此,如何高效构建威胁情报就成了一个核心问题。然而,当前在信息安全领域,威胁情报普遍存在着冗余度较高、内容单一、标准不统一的缺陷,难以共享。对此本文通过对恶意代码和非结构化网络威胁
论文部分内容阅读
随着物联网应用与规模的持续增长,同时带来了空前的网络安全威胁和安全风险。对此学术界提出利用威胁情报来对日趋复杂的安全问题进行预警和预测,威胁情报作为一种网络安全大数据,可以有效帮助防御者更好地提升网络安全防护能力[1]。在此,如何高效构建威胁情报就成了一个核心问题。然而,当前在信息安全领域,威胁情报普遍存在着冗余度较高、内容单一、标准不统一的缺陷,难以共享。对此本文通过对恶意代码和非结构化网络威胁情报进行分析和抽取来构建威胁情报。本文主要工作内容如下:1.针对恶意软件的威胁情报生成过程中情报冗余度较高、无法快速生成的不足,研究提出了一种针对恶意软件家族的威胁情报实时自动生成(Real Time Automatic Generation of Malware Threat Intelligence,RAGTI)方法。RAGTI方法以开源恶意软件分析平台及STIX2.0标准为基础,首先,借助恶意软件分析平台获取恶意代码运行痕迹,分析并提取代码运行痕迹特征;然后,结合恶意软件的静态特征来综合计算恶意软件特征的模糊哈希值,接着使用改进的CFSFDP算法对恶意软件进行聚类;最后,依据每一类恶意软件家族的特征生成符合STIX2.0标准的威胁情报。实验表明,该方法能够将相似度较高,隶属于同一家族的恶意软件聚合到一起,从而实现对某一恶意家族软件生成高度概括、可机读、可实时共享的威胁情报,显著提高了威胁情报的生成效率。2.针对开源情报无法有效利用的问题,研究提出了一种面向开源信息的威胁情报实体抽取(Threat intelligence entity extraction-based open source intelligence,TIEE-OSI)方法。TIEE-OSI方法首先根据APT报告本身的特点结合STIX2.0标准定义了一组威胁情报领域的命名实体,包括软件、恶意软件、漏洞、攻击工具、攻击者等。首先,对收集到的APT报告根据BIO格式进行手工标注,将标注完成后的实体构造成一个字典,通过字典匹配剩余未标注的APT报告,以此来扩充数据集的规模;然后,针对当前基于神经网络的端到端实体抽取系统应用于网络威胁情报领域时,无法准确标注威胁情报实体类别及其边界的问题,提出了融合词特征、字符特征、实体边界特征以及实体词的上下文特征,将该研究问题建模为序列标注任务;最后,基于深度学习模型和注意力机制设计模型框架,在更为准确地识别网络威胁情报实体的同时,提高模型训练速度。实验结果表明,该方法可以有效地从海量异构数据中抽取威胁情报实体,从而用于威胁情报的自动化生成。
其他文献
计算机视觉是计算机领域研究的重要分支,一直以来倍受学者、专家关注。其中机器视觉中的单目标跟踪方向,由于其在实际生活中被广泛应用,一直以来成为被研究的热点。目标跟踪任务因其跟踪的目标本身的不确定性以及其跟踪环境的复杂性,会面对诸如目标遮挡、尺寸变化、运动模糊以及长时间跟踪等问题。因其应用场景的复杂性,这就要求跟踪算法有较强的环境适应能力,即良好的鲁棒性。本文针对目标跟踪面对的难题,提出一系列的解决方
随着社会各方的需求、信息化的推进以及计算机视觉的发展,微表情识别领域得到了越来越多的关注,研究人员对其所进行的研究越来越深入。在商务谈判、刑事审讯、心理治疗等场合中人们会有意无意的隐藏自己的真实情绪以此来达到他们的目的,微表情是人类的肌肉语言,在此类情况下使用微表情识别的结果作为判断依据,可靠性则会大大提升。微表情区别于寻常宏表情的显著特点:(1)持续时间短(1/25-1/5秒);(2)肌肉运动幅
视觉目标跟踪是计算机视觉领域的一个重要分支,在智能视频监控、无人驾驶、人机交互等多个领域有着重要应用。本课题的研究内容是单目标跟踪,表现形式为在第一帧提供待跟踪的任意单个物体,在接下来的图像序列中,跟踪算法应当准确、实时地预测目标的位置。由于第一帧提供的信息有限,不足以应对后续跟踪场景的复杂性与多变性,同时,跟踪器的速度要满足实时性,这些难点使得视觉目标跟踪一直是一个极具挑战性的任务。如何设计一个
图像融合是将在同一场景下,通过不同传感器获得的图像综合成一幅新的图像,使得融合图像具有更丰富的细节信息,对场景内的所有物体都能够清晰的识别,从而便于后续进一步的图像处理和分析。随着对图像融合领域的深入研究,图像处理的手段越来越丰富。以曲波变换、轮廓波变换、剪切波变换、非下采样剪切波变换(Non-Subsampled Shearlet Transform,NSST)等为例的多尺度变换工具能够对图像进
运动目标检测与跟踪技术作为计算机视觉领域重要研究方向之一,其被广泛应用于智能监控、交通系统和人机交互等多个领域。而在实际的应用场景中,往往存在动态背景、光照变化、遮挡、尺度变化和快速运动等复杂干扰的影响,给运动目标的检测与跟踪产生巨大的困难和挑战。本文针对鬼影及阴影的消除方法、特征融合方法和模型更新策略进行研究,具体研究工作如下:(1)针对视觉背景提取(Visual Background Extr
自旋转移力矩随机磁存储器(STT-MRAM)是一种新型的非易失性存储器,被认为是最具有潜力替代Flash的新型存储器之一,在未来的各行各业均具有广泛的应用前景。本论文针对STT-MRAM外围电路的两个主要组成部分:读电路和写电路,进行了相关的设计与研究。首先,针对深纳米级的STT-MRAM,设计了一种具有动态参考和可变容差的新型读电路,实现了极高的传感裕度(SM)和较小的读取干扰(RD);然后,设
视觉目标跟踪经常被应用于无人机、视频安防、智慧城市等领域,其任务是给定初始帧中待跟踪目标物体的信息,在后续视频帧中预测目标的实际位置和尺寸大小。在复杂背景环境下既保证跟踪精度又保证跟踪速度是视觉目标跟踪任务的难点。本文以深度孪生网络结构为基础,针对当前视觉目标跟踪算法中存在的难点问题展开研究,具体研究成果如下所述:(1)通常卷积网络提取到的特征包含低层、中层和高层抽象信息。许多孪生网络类跟踪算法在
信息物理系统(Cyber Physical Systems,CPSs)是将传感、通信、计算和控制过程高效结合而形成的复杂系统。目前,信息物理系统已在智能电网、医疗监测、智慧工厂、智能交通等众多领域得到广泛应用。不同于以往封闭式的工业内部网络,通讯网络的接入极大地提高了系统运行效率同时,也带来了许多安全问题。近年来针对信息物理系统的攻击事件频频发生,造成巨大的经济和社会损失,这已经引起了国内外相关学
图像相较于文字而言,传递信息的方式更为简单直接,因此运用更为广泛,但图像在采集、传输和使用过程中,往往会引起不同程度的失真,这就需要质量评价算法对其进行评估。现阶段图像质量评价的主流算法大多基于机器学习(特别是深度学习),现有研究表明机器学习算法对数据的对抗性扰动极其不稳定,存在鲁棒性和安全性问题。基于此本文研究了一系列的对抗性扰动样本来攻击现有图像质量评价算法,找出其漏洞,希望本文的攻击方式能让