论文部分内容阅读
互联网的应用使数据增长速度惊人,智能手机、平板电脑、云空间、物联网的推进,促使数据膨胀问题更加严峻。经济全球化需企业家敢于表现,吸引客户注意力,服务好客户,与客户达到互利共赢。而这表现的平台便是利用互联网的电子商务网站。可是平台里依旧有历史遗留问题,即“数据亿万万,价值找不到”。数据如同改革开放,也需要开放,即流通。流通应该顺应时代与技术发展要求,因为拒绝数据意味着拒绝财富。数据“4V”时代已经来临,即数据的“大量化(Volume)、多样化(Vaviety)、快速化(Velocity)、价值化(Value)"、门户站点商情广告、网上银行支付结算、搜索引擎社交网络等多种类型的电子商务以数据的形式正改变着人们的生活。对于激增的存储数据量,剧增的数据复杂度,数据的分析研究者们突破重重困境,找到行之可行的方法,将数据的价值挖掘出来,以帮助数据拥有者能从大量的数据中寻找某些规律性以辅助决策。这个方法便是数据挖掘技术。电子商务是未来经济发动机,在电子商务中运用数据挖掘推荐页面是企业向世界全面展示形象和产品、寻找合作伙伴和扩大销售规模的最佳途径。本文通过数据挖掘技术在新兴的电子商务推荐系统领域的应用进行了初步研究。本人主要完成如下工作:一是系统的论述了目前国内外数据挖掘、电子商务及推荐系统研究的现状。二是简述了在电子商务企业中应用Web数据挖掘技术。三是阐述了在推荐系统中运用的推荐算法与技术。四是改进推荐Apriori算法,设计了一个基于Web数据挖掘的电子商务推荐系统。推荐系统是本论文的重点。在推荐系统设计之前,先是对推荐系统进行可行性分析,然后是分三大模块对推荐系统进行设计。这三大模块分别是数据访问模块、系统架构应用模块和交互用户模块。接下来对这三大模块进行细分,详细设计了组成数据访问模块的数据收集模块和数据预处理模块,组成系统架构应用模块的OLAP系统架构模块和基于B/S服务的数据挖掘系统模块,及组成交互用户模块的在线推荐模块与模式应用模块。在系统架构应用模块中运用了改进后的Apriori算法,实现关联规则的推理,确定关联页面,形成推荐集。在用户交互模块中显示运行算法后的运行界面,展示推荐系统的个性化服务。虽然在电子商务推荐系统中运用数据挖掘技术能够为商家带来大量的经济价值和利益,但它也是一把双刃剑。商家在收集大量的数据的同时,又面临着数据处理、使用、保管和安全等方面的新挑战。如何有效保护消费者个人的隐私安全等,如何真正利用数据挖掘提升企业的价值,如何在移动互联网时代让更多的数据以非结构化的形式出现,数据挖掘发展还任重而道远。