【摘 要】
:
日本JFE公司一种全铁素体基体的纳米级析出强化型热轧高强钢,在保持高强度的同时兼顾高延伸率和高成型性,可以广泛用于汽车大梁、B柱等。本文通过Cu、Mo、Ti、V的微合金元素的添加,研究了实验钢的铁素相变及纳米级复合析出物的析出行为,并结合析出物的理论热力学和动力学计算进行分析,做了以下工作:(1)通过连续冷却实验,研究了实验钢的常规连续冷却行为和超快冷下的连续冷却行为对铁素体相变的影响,得出了实验
论文部分内容阅读
日本JFE公司一种全铁素体基体的纳米级析出强化型热轧高强钢,在保持高强度的同时兼顾高延伸率和高成型性,可以广泛用于汽车大梁、B柱等。本文通过Cu、Mo、Ti、V的微合金元素的添加,研究了实验钢的铁素相变及纳米级复合析出物的析出行为,并结合析出物的理论热力学和动力学计算进行分析,做了以下工作:(1)通过连续冷却实验,研究了实验钢的常规连续冷却行为和超快冷下的连续冷却行为对铁素体相变的影响,得出了实验钢在不同条件下的动态CCT曲线,超快冷可以有效缩短铁素体相变开始的时间,降低铁素体相变开始温度,从而有效细化铁素体晶粒。变形温度的降低,可以细化铁素体晶粒,提高铁素体晶粒的显微硬度。变形量的增加,同样可以细化铁素体晶粒,提高铁素体的显微硬度。(2)在静态等温实验,获得了实验钢的铁素体相变动力学曲线和静态TTT曲线,确定了 Mo-Ti-Cu微合金钢的鼻子点温度为610℃,Mo-Ti-V微合金钢的鼻子点温度在590℃,在动态等温淬火实验中,探讨了等温温度、等温时间对铁素体相变的影响。(3)在Mo-Ti-Cu微合金钢的铁素体晶粒内部存在有两种独立的析出物分别为ε-Cu和(Ti,Mo)C,ε-Cu在600℃等温过程中发现有相间析出行为,(Ti,Mo)C的相间析出主要存在于620~680℃。等温温度升高,ε-Cu的析出量迅速减少,在600℃等温过程中未发现有(Ti,Mo)C的析出,未观察到碳化物和ε-Cu同时相间析出的铁素体晶粒,在620℃等温过程中,随着等温时间从2h延长至8h,碳化物的相间析出消失,同时ε-Cu明显粗化,从~13.24nm粗化为~38.48nm,但是仍小于理论计算值。ε-Cu与基体保持K-S关系:[11-1]ferrite//[011]ε-Cu,(1-10)ferrite//(1-1-1)ε-Cu,碳化物与铁素体基体保持有 N-W 关系:(111)carbide//(011)ferrite,[01-1]carbide//[100]ferrite 和(-1-11)carbide//(01-1)ferrite,[1-10]carbide//[100]fenite。通过析出强化的理论计算发现在620℃时,碳化物可以提供最高的析出强化值为360.18MPa。(4)通过对碳化物的热力学模型的建立,计算得到了(Ti,Mo)C的固溶度积公式。高温下,析出物中主要富集Ti元素,而Mo元素在高温下几乎不析出,随着温度的降低,Mo的析出量逐渐提升。(Mo,Ti)C在650~600℃区间内,随着温度的降低,其沉淀自由能反而降低,并在600℃时达到峰值,抑制了碳化物的析出行为。ε-Cu析出产生的临界温度为763.72℃。计算获得了(Mo,Ti)C的析出动力学,碳化物PPT曲线的鼻子点温度为 750℃。
其他文献
数控机床加工是制造业中一种应用广泛的机械加工制造方法,在一些大型的制造类企业数控加工中,使用机械手代替人工操作已经是一种非常普遍的现象。目前大部分中小型企业无力承担昂贵的机械手,在数控加工中依然采用人工的上料卸料的方式。为提高中小型制造类企业的生产效率和自动化程度,设计研发了一种数控机床加工柱状类零件时用于自动上下料的经济型连杆机械手。论文主要研究内容如下:(1)根据取放料任务要求和工艺流程,制定
铸造铝硅合金是一种广泛应用于汽车、航空航天等工业领域的合金材料。Fe是铝硅合金中最常见的杂质元素,硬脆的针状富Fe相会降低合金的力学性能。目前为了消除富Fe相有害影响,目前工业采取一些净化除铁的方法,但效果不理想,因此改变富Fe相形貌成为降低其危害的重要途径。本文采用添加Li元素方法来改善铝硅合金中Fe相和共晶硅的形态。利用XRD、金相显微镜、SEM、DSC等现代测试手段。通过DSC测定加Li前后
纯钛因其具有较低的密度、较低的弹性模量、良好的耐蚀性以及优异的生物相容性而被广泛应用于航空航天、生物医学等军事和民用领域。然而,纯钛的强度较低,限制了其在较大载荷承力部件的应用。限制模压变形法作为一种新型的剧烈塑性变形工艺,具有实用、简便的优点,尤其可以加工大尺寸的板材而受到关注。目前,限制模压变形法已成功用于纯铝、铜等FCC结构金属,然而对于HCP结构的纯钛,室温下变形困难,限制模压变形过程中容
激光熔覆技术的含义为应用不同的送粉方式在基体表面上涂覆选择的熔覆材料,利用激光头发射激光,熔化被照射到的熔覆材料和基体,冷却凝固后使两者融合并形成良好的冶金结合,重复上述过程,逐渐熔覆出具有一定宽度和高度的熔覆层,最终生成完整零件。轴类零件是机械传动中必不可少的一部分,因此对轴类零件进行修复再制造具有实际意义。本文主要以45钢轴类零件作为研究对象,初期选用了 Fe105粉末和Ni60粉末作为熔覆材
海洋资源对人类社会的可持续发展提供中坚力量,自治式水下机器人(Autonomous Underwater Vehicle,简称AUV)的发展和应用越来越重要。但是,其内部的能源有限,在水下作业一定时间之后就需要进行回收,不仅打断了作业的连续性,而且耗时耗力。随着海底观测网络的发展,AUV水下对接技术应运而生,通过与海底观测网提供的接口及其他可能设备连接,使AUV在水下自主完成充电、数据上传和新的任
节能,环保问题是当今汽车行业必须面临的两个重大问题。为了解决这两大问题,研究者们提出了多项举措,其中就包括汽车轻量化技术。采用轧制差厚板制造汽车零部件是实现汽车轻量化的有效方式。生产轧制差厚板的核心技术是变厚度轧制技术。在轧制过程中,通过辊缝的实时调整来得到沿轧制方向厚度变化的板材。目前,对于轧制差厚板的实际应用的研究还不够深入,主要包括以下几个方面:轧制差厚板冲压成形性能,轧制差厚板冲压模具设计
行星齿轮传动系统具有承载能力大、传动比大、传递效率高等优点,广泛应用于高速小功率以及低速大扭矩装备中,如齿轮传动涡轮风扇(GTF)发动机、风力发电机、工业机器人、医疗检测设备等相关机械。齿轮副啮合刚度的时变性,造成传动系统的内部激励,是机械装备的主要振动源之一。本文基于弹性力学中的势能法,改进渐开线齿廓行星齿轮啮合刚度计算的精度,在此基础上考虑修形的影响,建立精确的行星齿轮时变啮合刚度计算模型,并
随着真空开关向着大容量、高电压、小型化阶段的发展,提高真空开关触头材料性能的研究受到广泛关注。Cu-Cr合金因具有耐压强度高、分断性能好、耐电流侵蚀能力强、电流截断值小等优势,是真空触头开关的首选材料。然而,固态下的Cu和Cr几乎不相溶,采用传统工艺制备此类合金,铬偏析严重且组织粗大,难以制得理想的Cu-Cr触头材料,限制了 Cu-Cr触头材料的应用范围。所以,提升Cu-Cr合金材料组织的均匀性与
硅钢作为一种软磁性材料,广泛应用于变压器、电机等设备上。工业上通过轧制生产的硅钢的Si含量小于4%,而综合磁性能优异(铁损低、磁感高和磁致伸缩极低)的6.5%硅钢(称为高硅钢)则因延伸率接近于零而难以用轧制的方法进行批量生产。目前,只有CVD法在日本有小规模应用,但也存在沉积温度高,SiCl4气体对设备和板材腐蚀严重和FeCl2污染环境等问题。固体渗硅技术能够在渗硅温度和腐蚀性卤化物含量均较低的条
烧结金属多孔材料具有高开孔率、低密度、相对比表面积大、抗冲击性能高、通透性能好等诸多优点的一类多孔材料,因此成为过滤行业研究的重点。错流过滤作为一种先进的过滤技术,具有优异的连续过滤能力、高过滤效率、高适应能力的特点。因此本文研究了不同材质的烧结金属多孔材料在错流过滤器上的应用。比较烧结金属多孔材料的过滤分离性能并对这些材料进行检测评价。在实验过程中模拟工况条件下的固液分离。通过对固液分离过程的研