【摘 要】
:
近年来,中国的铁路发展迅速。铁路的飞速发展急需要改进列车维护技术。道岔转换设备是较为重要的驱动装置,是铁路行车保障安全和铁路运输提高效率的关键性设备,是实现基础设施信号互锁的枢纽。然而,道岔数量众多,种类繁多,结构复杂,使用寿命短,安装环境多样等特点,增加了道岔维护的困难。为了检测道岔设备运行状态,当前绝大多数铁路道岔依靠的是传统性常规的预防测试以及人工计划维护。但现场维修的工作人员无法及时发现道
【基金项目】
:
国家重点研发计划“列控系统故障诊断与定位技术”(编号:2018YFB1201500);
论文部分内容阅读
近年来,中国的铁路发展迅速。铁路的飞速发展急需要改进列车维护技术。道岔转换设备是较为重要的驱动装置,是铁路行车保障安全和铁路运输提高效率的关键性设备,是实现基础设施信号互锁的枢纽。然而,道岔数量众多,种类繁多,结构复杂,使用寿命短,安装环境多样等特点,增加了道岔维护的困难。为了检测道岔设备运行状态,当前绝大多数铁路道岔依靠的是传统性常规的预防测试以及人工计划维护。但现场维修的工作人员无法及时发现道岔的故障。另外,手动测试需要维护人员具有丰富的工作经验,而缺乏经验的员工容易在诊断中犯错。为应对这一问题,部分铁路通过采集道岔运行的电流和功率等相关信号,使用基于阈值判断的故障诊断软件的微机监控设备,来实现道岔的故障报警。但由于绝大多数道岔工作过程复杂且工作环境恶劣,往往导致微机监控设备预设的阈值在一段时间失去其参考价值。另外,其预设阈值通常是通过道岔维护专家进行设置固化的,因此使得预设阈值无法及时进行有效更新。针对上述问题,本文基于道岔功率曲线提出了以数据驱动的道岔智能故障诊断方法,并结合实际需求完成了道岔故障诊断系统的设计与实现。具体工作分为以下三个方面:(1)基于IFD-IS的道岔故障诊断方法研究针对已有道岔多故障检测准确率不高的问题,本文研究了基于六种道岔常见故障的智能诊断方法,提出基于滑动窗口和反向神经网络(Back Propagation Neural Network,BPNN)的曲线分段方法ICS-p,对原始道岔动作信号数据实现分段预处理,接着运用特征提取、选择和降维等操作,结合支持向量机(Support Vector Machine,SVM)分类算法,提出了 IFD-IS道岔智能故障诊断方法,实现了道岔的故障诊断,诊断准确率最高达到98.57%;(2)基于数据增强和卷积神经网络的智能故障诊断方法研究针对道岔实际运维过程中故障样本不足的问题,运用人工少数类过采样法(Synthetic Minority Over-Sampling Technique,SMOTE)与深度卷积生成对抗网络(Deep Convolution Generative Adversarial Networks,DCGAN)等数据增强方法扩充了故障样本,并以此结合卷积神经网络(Convolution Neural Network,CNN)提出一种道岔故障诊断模型,实验表明诊断准确率最高达到99%,有效提高了诊断准确率;(3)基于QT的道岔故障诊断系统的研究与实现基于本文所提出的IFD-IS道岔故障诊断模型,使用QT和Python语言对模型算法进行了系统实现,具有数据可视化、曲线分段、特征提取、特征选择、故障诊断等相关功能,完成了操作界面,易于维护人员的操作,方便操作者简易直观地了解道岔运作情况。
其他文献
科学研究和实际应用中的许多问题可以转化为优化问题,而这些优化问题有一部分是多模态的,即在求解区域内同时具有多个全局最优解点.如何有效的一次性求出全部最优解点一直是多模态优化领域研究的热点问题。本文以多模态优化问题为主要研究对象,基于差分进化算法及小生境思想对多模态优化问题进行了深入地分析和研究,提出了两个求解多模态优化问题和一个求解约束多模态优化问题的有效算法.主要研究工作有以下几个方面.(1)针
许多科学研究和工程实践中的优化问题涉及计算代价昂贵的仿真,如何有效地解决这类高代价的优化问题仍然是一个巨大的挑战。近年来,基于代理模型的演化算法得到了广泛的研究,被认为具有解决此类优化问题的潜力。针对传统的基于代理模型的演化算法在求解高代价优化问题时代理模型的可靠性较差、演化算法的求解效率较低以及离线数据驱动的演化算法求解精度较差等问题,本文提出三种基于代理模型的粒子群优化算法,主要研究内容如下:
群智能算法作为优化技术的一种新手段,具有求解速度快,不受实际问题维数与连续性限制等优点,因此对群智能算法的研究,深受国内外众多学者的青睐。猴群算法是模仿猴子爬山过程的新型群智能算法,更新过程操作简易,适应于求解高维数的优化问题。为了进一步提升猴群算法的优化性能,本论文给出了对其改进的两种方案,并且将其应用于求解背包问题。1.提出了基于Levy飞行的广义反向猴群算法,并利用所提出的算法求解折扣{0-
哈里斯鹰优化算法(HHO)是模拟鹰群捕食和追捕行为的一种群智能算法,存在着计算精度不高、易陷入局部最优和难以平衡探索与开发等不足。本文提出了两种改进的HHO算法,并将其应用于工程约束优化、数据聚类中;建立了两种基于改进HHO的灰色预测模型,用于电力预测和新型冠状病毒肺炎累计人数预测问题中,拓展了 HHO算法的应用领域。具体研究内容如下:(1)提出了随机无迹Sigma点变异的哈里斯鹰优化算法(IHH
图像恢复是图像处理和计算机视觉领域重要研究内容。在低照、雾霾等条件下,户外计算机视觉系统所采集图像通常会遭受严重的退化,如低亮度、低对比度、细节丢失等,严重影响其在户外计算机视觉系统中的应用。因此对户外计算机视觉系统在低照、雾霾等条件下采集图像进行增强和复原,具有非常重要的意义。本文聚焦于低照/雾霾图像增强和复原的深度学习方法研究,所开展主要工作及取得成果包括:(1)针对传统低照图像增强方法对噪声
近年来,为了缓解高强度交通需求,地铁成为大多数通勤者的首选出行方式,精准的客流预测可以帮助乘客提前选择合理的乘车方案。本文围绕郑州市一年内的客流数据进行深入分析,主要研究工作如下:(1)总结地铁客流的分布规律和时间,针对SVR(Support Vector Machine)模型参数难选取、特征选择不准确的困难,提出基于多目标优化算法(MOEA:Many-objective Optimization
随着信息化时代的到来,人们接收的信息不再是单一的语音信号,更多的是图像信号,这是人类进行信息传播和交流的主要途径。但是图像信息在传输的过程中会受到各种噪声的干扰,噪声会使图像细节丢失、图像模糊,因此,图像去噪一直是研究热点。目前己经有大量的图像去噪算法被提出来,取得了较好的效果。然而,在去除噪声的同时保持图像更多的边缘细节特征依旧是图像去噪问题的研究关键。本文针对此问题,从保留图像的边缘细节特征出
频繁子图模式学习的精确算法的计算主要集中在子图同构测试上,但子图同构已经被证明为NP完全问题;近似算法避免了子图同构测试,但准确率较低。带容量约束的路径路由问题是一类由图演变的组合优化问题。在求解与图结构有关的组合优化问题时,存在大量与解特征有关的模式信息,这些模式信息对求解产生重要影响。针对以上问题,本文主要工作包括:(1)研究了一种改进的频繁子图模式学习算法。在所提算法中,采用固定大小节点采样
在沙尘天气条件下,受大气中悬浮微粒对入射光的吸收和散射作用影响,户外计算机视觉系统采集的图像通常存在颜色失真泛黄、对比度下降、细节信息丢失等问题,严重影响其在视频监控、视频导航和智能交通应用中的性能。针对以上问题,本文围绕基于深度学习的沙尘图像色彩恢复与增强方法展开研究,具体工作及所取得成果如下:(1)针对难以获取成对沙尘图像及其对应清晰图像作为深度学习训练样本的问题,提出一种基于物理成像模型的沙
无线传感器网络(Wireless Sensor Network,WSN)是一种将传感器采集到的数据通过网络收集起来进行分析处理的无线通信网络。目前广泛用于军事、智能家居、交通控制和医疗等各行各业。由于WSN路由协议的设计受到本地拓扑信息的单一性质的限制,传感器节点必须具备体积小和价格便宜等特点,这些特点使得传感器节点在能源供应、数据计算、节点通信和数据存储等方面受到限制。因此节省网络的能量消耗,提