BTA深孔钻振动钻削刀具系统径向动力学特性仿真与实验研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:hanxiqq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
错齿BTA深孔钻振动钻削技术以其断屑可靠、排屑顺畅、钻削力小、加工精度高和刀具寿命长等优势,在深孔加工领域得到了广泛应用。然而由于深孔振动钻削机理的复杂性以及加工条件的多样性,实际加工过程中刀具系统受到各种复杂环境的影响,导致刀具中心的运动轨迹极其复杂,进而对孔的加工质量造成影响。因此如何准确的控制切屑和钻削力的大小以及预测刀具系统的径向振动等已成为深孔振动钻削加工中的热点和关键问题。本文以第三代核电AP1000蒸汽发生器管板的深孔加工为背景,围绕振动钻削断屑机理、钻削力模型以及刀具系统径向振动特性展开仿真与实验研究,为BTA深孔钻振动钻削孔加工质量的控制及工艺参数优化提供理论依据。分析BTA轴向振动钻削工作原理,建立BTA钻头运动轨迹的数学模型,研究了振动钻削断屑机理及工艺参数对切屑形态的影响规律,得到了振动钻削断屑条件、断屑区域图以及动态切削厚度的变化规律。依据振动钻削断屑机理,建立理论切屑长度的数学模型,研究了频转比对切屑长度的影响规律。分析振动钻削加工过程中刀齿主切削刃上任意一点实际切削角度的变化规律,建立了振动钻削动态切削角度的数学模型,讨论了工艺参数对动态切削角度的影响规律。对钻削加工过程中的刀齿进行受力分析,并基于正交剪切切削力单元模型建立错齿BTA深孔钻振动钻削钻削力数学模型,分析了钻削工艺参数对扭矩和轴向力的影响规律。对刀具系统进行了简化,忽略导向条的挤压,只考虑外齿副切削刃径向振动对孔加工质量的影响,建立了刀具系统径向动力学模型,研究了刀具系统的径向动力学特性。在保证刀具系统动力学方程解精度的前提下,将其切削加工过程离散为多个微小的切削单元,而相邻切削单元之间满足状态方程的连续条件。然后利用差分方程求解方法,给出了深孔钻削过程中刀具径向振动位移大小的数值解,研究了钻削工艺参数对刀具系统动态特性及稳定性的影响,揭示了在BTA深孔钻削加工过程中刀具系统颤振是造成孔加工质量变差的主要原因之一,而颤振的产生受切削参数的影响,并证明了振动钻削具有抑制颤振的作用。搭建BTA深孔振动钻削试验平台,完成钻削工艺参数对钻削力、断屑效果、刀具系统径向振动特性以及孔加工质量的实验研究。实验结果表明:当频转比接近整数时钻削力出现极小值点,而当i接近0.5时出现极大值点;振动钻削降低了刀具系统的径向振动,提高了钻削系统的稳定性。与普通钻削相比,孔加工圆度、孔壁表面粗糙度及微观形貌得到了明显改善,实验结果验证了上述理论分析方法的的正确性和有效性。
其他文献
对于高速发展的制造业,急需研究一些能够满足在低成本的前提下制造出高精度产品的方法,而误差补偿技术具有成本低、快速提升机床精度的特点,因而得到了广泛关注。传统的误差补偿方法主要采用激光干涉仪对数控机床的几何误差进行检测并补偿,然而该方法无法补偿机床在加工过程中产生的误差,而利用插补器进行误差补偿又会受到机床访问权限的限制。针对该问题,研究者提出了基于离散模型的自适应补偿算法,并将误差补偿到模型上的每
镁合金由于高比强度、优异的电磁屏蔽性和可加工性在汽车工业、航空航天、生物医疗和电子通信等领域引起了广泛关注。但是镁合金高的电化学活性,使其易于氧化且在室温下易于腐蚀,严重限制了其工程应用。ZrO2和TiO2是一类化学性质稳定的氧化物陶瓷材料,超疏水表面可在金属基体和腐蚀液之间形成一层空气膜并有效阻碍腐蚀性介质与金属基体的相互作用,在镁合金表面构筑ZrO2/TiO2的超疏水层则有望显著提升镁合金材料
管道输送作为石油天然气主要的运输方式,最为经济安全,在国内外均发展迅速。但频繁发生的油气泄漏、输送管爆炸等事故逐渐引起了人们的广泛关注,其中腐蚀破坏是影响管道系统使用寿命和可靠性的关键性因素。层状复合材料使强度、熔点、热膨胀系数差异较大的异种金属实现完美的冶金结合,充分发挥了每种材料的各自特性。本文以TA1、Q235异种金属为研究对象,从熔化焊非均匀温度场及组织匹配性出发,剖析TA1、Q235焊缝
近年来,工业技术不断朝向现代化、产业化以及规模化发展,各种极端的工作条件频繁出现,对于加工工具、材料提出了更加严苛的要求。硬质涂层作为一种高性能材质,可用作材料表面充当防护涂层,从而提高材料的使用寿命,使其能够适应更加复杂的工作环境中。硬质涂层通常包括高硬度、高熔点的碳化物、氮化物、碳氮化物、硼化物、氧化物等材料。氮化物硬质涂层作为第四族元素综合性能优异,具有熔点、硬度高,耐磨性以及耐腐蚀性优良等
β单相区锻造(β锻)结合两相区热处理为获得综合性能优异的片层交织的网篮组织提供了一种可能的方法,片层的含量、形貌和分布决定着网篮组织的性能,对其预测控制极为重要。然而该过程中片层的演化复杂,且对锻造和热处理工艺参数敏感。因而,在明确网篮组织形成过程的基础上,研究探明β锻结合两相区热处理工艺对网篮组织中片层演化的影响规律是实现目标组织控制的关键。本文采用热模拟压缩实验、热处理实验,结合定量金相分析技
马氏体不锈钢的显著特点是淬透性好,可以通过淬火、回火等热处理工艺进行强化,从而得到较高的强度、硬度、良好的耐磨性及耐疲劳特性,并具有一定的耐腐蚀能力,因此在石油、化工、汽车及航空等领域获得了广泛应用。但由于马氏体不锈钢焊接接头易产生裂纹、脆化等缺陷,在很大程度上限制了它的应用。本文采用FISCO试验、热影响区最高硬度试验和斜Y型坡口焊接裂纹试验评定了新型热轧马氏体钢10Cr13Ni2的裂纹敏感性;
奥氏体不锈钢由于屈服强度不高,在制造、服役过程中易发生塑性变形,引发奥氏体相转变为马氏体,马氏体相变过程会使得材料的部分性能发生变化从而影响它的使用。目前,关于形变诱发马氏体相变影响因素的研究主要有化学成分、变形温度、应变速率及形变模式,而应力状态无论对于材料内部晶粒变化或是整体材料的性能都有着显著的影响,因此,研究应力状态对形变诱发马氏体相变的影响显得格外重要;超声冲击是奥氏体不锈钢在强化过程中
本文基于黑色陶瓷层显色原理,利用第一性原理研究了 Fe、Co、Ni和Cu替位掺杂MgO后的禁带宽度及态密度分布。通过Fe掺杂微弧氧化黑色陶瓷层验证和探讨了镁合金微弧氧化黑色陶瓷层掺杂元素的选择依据。研究结果如下:经第一性原理计算,Fe、Co、Ni及Cu元素掺杂均可降低MgO的禁带宽度,且带宽随掺杂浓度增大而减小,理论上符合黑色陶瓷层掺杂的要求,其中降低作用由大到小依次为Fe>Co>Ni>Cu。掺杂
微弧氧化陶瓷层生长是等离子微区放电能量逐渐增大而陶瓷层的致密性逐渐下降的过程。本文研究了陶瓷层生长过程中微区放电能量与陶瓷层致密性的对应关系、相同厚度不同致密性陶瓷层的制备、双极性负向脉冲电压对陶瓷层生长时最大微区放电能量的影响,探讨了微区放电能量对陶瓷层致密性的作用机制及致密陶瓷层生长工艺的调控依据,为解决铝合金微弧氧化陶瓷层绝缘和导热的矛盾提供了可行途径。研究结果如下:微弧氧化不同阶段试样表面
随着社会以及现代工业的快速发展,传统单一金属材料已无法满足实际应用的需求,这导致各领域对于材料使用的综合性能提出了更高的要求。钢铁材料作为如今工业化进程中必不可少的部分,其中低合金钢在其使用中的占比高达30%左右,然而低合金钢的服役环境与使用寿命不合理的矛盾则尤为值得关注。目前,表面工程技术能够有效地解决这一现状,Inconel 625拥有出色的高温性能以及卓越的抗腐蚀、抗老化能力,同时可在600