【摘 要】
:
十三届全国人大四次会议报告显示,2020年检查机关起诉涉嫌犯罪的未成年人的人数高达3.3万人,恶性案件低龄化的犯罪趋势使得国内对于未成年人骨龄鉴定需求有所增多。在国内的司法领域中,骨龄鉴定作为证据在对嫌疑人判刑方面发挥了巨大的作用。目前国内的骨龄鉴定主要依靠人工鉴定,依赖骨龄计分法对手骨发育进行等级评分得到预测骨龄,其缺点是需提前掌握相关知识并需要进行繁琐的操作,对于非专业人员来说是比较高的门槛,
论文部分内容阅读
十三届全国人大四次会议报告显示,2020年检查机关起诉涉嫌犯罪的未成年人的人数高达3.3万人,恶性案件低龄化的犯罪趋势使得国内对于未成年人骨龄鉴定需求有所增多。在国内的司法领域中,骨龄鉴定作为证据在对嫌疑人判刑方面发挥了巨大的作用。目前国内的骨龄鉴定主要依靠人工鉴定,依赖骨龄计分法对手骨发育进行等级评分得到预测骨龄,其缺点是需提前掌握相关知识并需要进行繁琐的操作,对于非专业人员来说是比较高的门槛,消耗的时间成本很高,不利于其在生活中的普及。为推动骨龄鉴定在现实生活中的普及,首要解决四个方面问题,首先是骨龄鉴定的人工成本,其次是骨龄鉴定的预测精度,其三是骨龄鉴定的设备要求,最后是骨龄鉴定的预测速度。本文提出基于轻量级神经网络实现骨龄自动预测方案,对目前主流的YOLOv3-SPP检测框架从基础网络,先验框生成,多尺度检测三个方面进行了改进从而提出HYOLOv3框架,并设计了高效优质的骨龄预测网络Mul-light Net专门进行骨龄的回归预测。具体是首先对拍摄的手骨X光图像预处理从而对数据集进行质量优化和扩充,然后通过手骨检测框架HYOLOv3进行手骨感兴趣区域提取,提取的关键区域进行姿态矫正和组合后通过骨龄预测网络Mul-light Net回归获取骨龄,从自动化,高精度,低算力,高速度四个方面解决了上述问题。本文主要研究内容和成果如下:(1)研究了关于RSNA手骨公开集的图像预处理方法,包括对于手骨图像使用对比度增强和滤波降噪技术进行数据集质量优化,还通过传统图像分割算法进行冗余信息的去除,用于进行原始数据集的扩充。(2)研究目标检测框架YOLOv3-SPP并从基础网络,先验框生成,多尺度检测三个方面进行了改进从而提出HYOLOv3框架,通过研究国际和国内的主流的骨龄计分法,选定最大程度保留手骨特征信息的感兴趣区域,训练了已有公开集并得到检测效果优异的模型权重,并为进行姿态矫正后的感兴趣区域设计了区域组合三网络方案作为骨龄预测网络的输入。(3)基于轻量级神经网络思想设计并且训练了骨龄预测网络Mul-light Net,并从多个角度设计了对比实验证明本文预测方案的优越性,并将最终结果与国内外多个同类骨龄预测研究进行比对证明其拥有更高的精度,更低的内存占用,以及更快的预测速度。(4)设计开发了集成本文检测和预测算法接口的骨龄自动预测系统,提供了简易快捷、高精度、低耗时的骨龄预测服务,并可通过该系统进行用户历史记录的回调,验证了本研究于现实领域推广的可行性,另外还在系统实现过程中开发了基于事件驱动的高并发服务器框架,在实际测试过程中性能表现优异。
其他文献
仓储系统广泛应用于现代物流行业,在物流的良好、快速发展进程中扮演着非常重要的角色。多层子母车仓储系统是建立在传统仓储系统的基础上发展形成的一种高密集型仓储系统,其具有空间利用率高、作业灵活等特点。仓储系统的作业效率会直接影响整个仓储系统的计算成本,因此提高仓储系统的作业效率是非常有必要的。仓储系统中货位布置作为系统作业的关键一环,合理的货位摆放有助于提高其作业效率,所以对仓储系统的货位进行分配优化
基于视觉的轨道扣件缺陷检测方法作为一种可替代人工巡检方式的低成本、高效率方法,在铁路运输安全保障方面具有重要的研究意义和广泛的应用价值。传统方法由于使用的是低级视觉特征,在扣件定位以及扣件缺陷分类任务上存在准确率低、鲁棒性差、泛化性差等缺点,因此并不适用于复杂环境下的扣件缺陷检测任务。基于深度学习的方法相较于传统方法在准确率、鲁棒性以及泛化性上都有明显的优势,然而这些方法大都忽略了扣件目标的特性,
计算机断层成像技术(Computed Tomography,CT)是一种在临床诊断中广泛使用的医学成像技术。它使用X射线在不同的角度对人体拍摄一系列的投影同时与计算机处理相结合,从而恢复出人体内部软组织、血管和骨骼等横截面图像切片。然而,X射线作用于人体会产生电离辐射,可能会诱发癌症、白血病等一系列疾病。因此,研究降低辐射伤害的同时得到尽量清晰的CT图像具有非常重要的意义。目前降低辐射剂量的方式有
信息化时代,以深度学习为代表的人工智能技术飞速进步并逐渐渗透到各行各业。随着近年来航空运输业的蓬勃发展,每日需要处理的飞行计划数据量日益增加,而航路作为飞行计划中FPL报文的重要组成项,由于其复杂的编写规则,目前仍然主要依靠人工进行错误检查。为提高工工作效率、节约人工成本,本文将深度学习引入航路报文纠错领域,采用端到端的神经机器翻译方法,将报文纠错过程看作错误航路到正确航路的“翻译”过程,从而实现
空中管制的智能化发展使得对智能飞行控制提出了更高的要求。目前为解决终端空域繁忙、结构复杂等问题,智能空管系统一般使用移动时隙对飞机进行调度。这意味着当飞机进入终端区域接收到加入时隙命令时,飞机应具备自主寻找路径加入时隙的能力。然而在空域结构较为复杂的终端区域内,传统的飞行控制方法依赖于已有的航程数据、精确的数学模型,当飞机的连续运动发生突变时,不能达到飞行目的,给时隙的调整和加入造成困难。在这种情
在基于生物特征识别的身份核验系统中,说话人识别技术相较于其他生物特征识别技术具有很多优势。由于实际使用中的身份核验系统对识别准确率、系统鲁棒性有着极高的要求,而目前说话人识别技术水平还很难满足系统的这些性能需求,因此该技术仍处在技术研究阶段,并未大规模在实际场景中应用。为提升模型的识别性能和模型的鲁棒性,本文对说话人识别中的关键技术:语音特征提取、损失函数与识别模型结构三个方面进行了相应研究。本文
在法医学身份认定实践工作中,传统主流方法是DNA对比、指纹识别、面部识别等。但是在大规模灾难发生的时候,尸体经常出现腐败化、白骨化、焚毁化等极端现象,前述传统方法难以应用。能否及时、准确地识别死者的身份,对于加快灾后重建,稳定遇难者家属的情绪至关重要。颅骨的蝶窦部位因为具有生物特异性以及抗物理损毁能力,在大规模灾难发生时,通常被法医学专家选作参考资料实现死者的身份认定。既往法医放射学专家通常利用蝶
低空监视雷达是基于三坐标的一次监视雷达。雷达有效工作范围为50km,搜索高度最高为3km,主要是对近低空的低小慢目标进行跟踪。低空监视雷达工作环境复杂,易受气象条件、地杂波、多役干扰等因素的影响。为解决在杂波密集情况下低空监视雷达目标跟踪算法性能效果不佳的问题,本文提出了基于机器学习的航迹起始分类算法和基于模糊聚类的联合概率数据关联算法,以提高目标跟踪的正确率,并满足实时性要求。基于机器学习的航迹
飞行冲突识别与调配活动在实际管制过程的占比较大,对该活动事项展开研究并研发出相应的辅助决策系统可以减轻人员的工作负荷和增强空管的服务能力。本文提出了基于神经网络的冲突识别与调配模型,通过学习历史数据获得管制员的管制策略,然后提供可被信赖的飞行识别与调配功能并完成相应系统模块程序的编写。探究相关的理论知识,该技术理论的研究往往结合航空器的运动学建立相应的数学模型,冲突识别尚可获得相对良好的效果但给出
CT技术因其成像清晰、扫描速度快等特点在临床筛查、病情追踪医学领域得到了广泛应用。CT技术的出现为医生诊断病情提供了有效的参考,但近来有研究表明CT拍摄时产生的辐射会对病人的身体健康带来很大的隐患。因此人们也越来越重视CT技术中的X光带来的危害。研究人员尝试降低辐射剂量来减少对病人身体的危害,但实验结果表明,降低辐射剂量将直接影响图像质量的好坏,因为会导致获取的图像产生噪声和伪影,不利于医生对疾病