论文部分内容阅读
燃气涡轮作为航空发动机核心机重要部件之一,其性能优劣直接影响航空发动机的安全性及经济性。为了追求航空发动机高推重比及高效率,燃气涡轮入口温度逐渐攀升,迫切地需要在燃气涡轮气动及传热技术方面实现突破。本文着眼于高推重比航空发动机高温涡轮叶片的传热机理及设计方法,依靠自编程序搭建涡轮叶片冷却结构设计平台及气热耦合优化设计方法;借助数值模拟方法研究了典型涡轮叶片外壁面及端壁换热特性及典型冷却结构单元内部流动换热机理。搭建了高温涡轮叶片冷却结构设计平台,该平台能够快速实现冷却结构设计,并评估冷却结构冷却性能;依据该平台完成了高温涡轮叶片不带气膜及带气膜两套冷却结构设计,设计结果表明该平台能够满足方案设计要求,且有效的避免设计过程中的盲目性,提高设计灵活性。搭建了考虑叶型及冷却结构的气热耦合优化设计平台,提出了能够同时考虑最高温度、平均温度、高温区面积、流阻系数及气动效率的目标函数,采用该优化策略寻优到气动及传热效果均较佳的方案。对比了整级优化以及静叶、动叶单独优化,发现采用静叶、动叶单独优化较整级优化的优化效率有所提高。此外,依靠本文平台对冷却结构设计及气热耦合优化设计结果,发现采用现有结构与新一代航空发动机对冷却的需求差距较大。本文对典型涡轮叶片外壁面换热特性进行研究,数值结果表明马赫数对涡轮叶片转捩影响不大;湍流度、湍流尺度及表面粗糙度的增大使转捩提前发生,并改变吸力面的压力凸起,表明吸力面转捩由分离导致转捩转变为旁通转捩。研究了弯叶片对典型涡轮不同工况端壁流动换热影响机制,发现弯叶片影响横向二次流并在非设计工况下使吸力面旋涡贴近叶片壁面运动、降低旋涡尺度从而降低端壁换热。弯叶片也可使前缘滞止点移动至压力面附近,减小了端壁热负荷。本文通过研究层板结构扰流柱参数对换热的影响,得出了扰流柱排布改变综合换热性能的机制,并给出最佳扰流柱结构形式。在高温涡轮叶片典型层板、双层壁冷却单元添加了凹坑结构,数值结果表明,合理地添加凹坑结构能够在保证流阻系数变化不大的情况下显著增大冲击靶面换热,进而减小外壁面温度。然而,过深或者过大的凹坑将会急剧降低冲击靶面换热。本文研究了高温涡轮叶片尾缘收敛通道凹坑-扰流柱换热提升机制,数值结果表明,凹坑添加后导致收敛通道流体冲击凹坑内下游壁面,流体流出凹坑后再附并与扰流柱前缘区域旋涡发生相互作用,从而增大了当地换热。此外,凹坑横向布置于扰流柱之间能够在增大换热的同时,增大流动面积从而减小流阻。而后针对收敛通道收敛角及凹坑深度对换热特性的影响发现,在大收敛角情况下,最佳凹坑深度比小收敛角情况下的最佳凹坑深度小,文中也给出了综合换热性能最佳的凹坑参数。