论文部分内容阅读
计算机技术、微电子技术以及通信技术的发展与成熟促使测控技术朝着智能化和网络化的方向前行。与此同时,各个应用领域对于仪表控制效果和整体性能要求不断提高,使得测控仪表的功能趋于完善,性能大幅提升。在过去的几十年间,各类检测与控制仪表经历了多次革新,在实际应用中持续发挥重要作用。回路控制器作为一种通用型控制仪表,应运而生并与时俱进,广泛应用于温度、压力等控制场合,其性能对测控系统整体表现发挥重要作用。然而,传统的回路控制器在控制算法的性能、人机交互和数据通信的完备性等方面存在不足,研究新型高性能回路控制器具有现实意义和应用前景。课题在介绍回路控制器发展历程和研究现状的基础上,分析了其发展趋势。借助相关仿真工具,课题研究了回路控制器的常规PID控制算法,并结合模糊智能控制理论,给出了参数自适应模糊PID算法。课题还着重研究了基于ARM和uCOSⅢ的新型回路控制器设计方法,给出了详细的软硬件设计方案。此外,针对人机交互和数据通信性能的提升,课题研究了GUI图形库STemWin和轻量级TCP/IP协议LwIP在回路控制器设计中的移植与应用。课题的主要工作总结如下。(1)回路控制器控制算法研究。研究PID算法和模糊智能控制的原理,并分析两者的特点与不足;结合MATLAB/Simulink仿真分析,研究参数自适应模糊PID算法原理,构建相应的控制器和控制系统仿真模型,对比常规PID分析其控制效果和性能。(2)回路控制器的硬件设计。以ARM微控制器STM32F407为硬件设计基础,制定整体设计方案,模块化设计CPU最小系统、数据采集、控制量输出、人机交互、数据存储和数据通信等相关模块电路。(3)回路控制器的软件设计。层次化设计回路控制器软件,移植嵌入式实时操作系统uCOSⅢ;设计相关底层硬件的驱动程序;结合STemWin和LwIP等中间件,设计回路控制、数据通信和人机交互等应用层任务。(4)回路控制器的实验测试。搭建基于水质氨氮检测系统的实验平台,将回路控制器应用于该系统相关环节的辅助控制,从而测试相关模块功能,检验其控制效果和整体性能。课题旨在研究回路控制器的控制算法及其改进,并基于ARM微控制器和u COSⅢ实时操作系统设计新型回路控制器,以提高仪表整体性能,从而适应复杂的控制对象和日益提高的控制品质要求。相关仿真和实验测试表明,该回路控制器的控制算法性能得到提升,其人机交互和数据通信等方面的性能也有所改进。