基于深度学习的5G宽带功放数字预失真技术研究

来源 :宁波大学 | 被引量 : 0次 | 上传用户:bjiyguang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着移动通信系统的高速发展,基带信号的带宽不断加宽,信号的调制模式越来越复杂,射频功放所体现的动态非线性现象愈发严重、记忆效应也表现得格外明显,因此对射频功放线性度的要求也越来越高,数字预失真作为研究射频功放线性化的重要技术手段,对其也提出了更为苛刻的要求。面对5G系统超过100MHz的宽带信号,宽带射频功率放大器中存在的强记忆效应严重地降低了基于传统非线性的数字预失真器的线性化性能,必须寻求具备能表现强非线性特性的功放模型;随着近年来人工智能、深度学习快速的推进并取得的惊人成果,使其获得了各行各业的青睐。与传统方式相比,神经网络的自学习能力尤为突出。在射频功放建模能力上,深度学习也将发挥其强大的自学习优势。本课题主要基于长短期记忆神经网络对工作在大带宽信号下的射频功放进行强动态非线性行为建模及线性化研究,长短期记忆神经网络优良的时序处理能力、循环传递机制,恰好与射频功放信号的时序、功放的记忆效应形成良好匹配。本文首先分析了不同带宽信号作用于射频功放时,功放在非线性上所体现的差异,通过输入输出幅值特性曲线(AM/AM)可以直观地发现信号带宽越宽,其非线性特性的动态范围就越大。基于现有的研究,本文通过结合射频功放的记忆深度与超前项数,构建基于循环神经网络的功放模型,并搭建了基于R&S仪器的实验平台,进行了与传统功放模型的一系列实验对比分析。最后,采用5GNR的100MHz测试信号,对Doherty功放进行了实验验证。实验结果表明:在记忆深度相同的情况下,广义长短期记忆神经网络模型在对射频功放强动态非线性行为建模的能力上,归一化均方误差(Normalized Mean Square Error,NMSE)值比传统模型高出至少4dB左右。在预失真性能实验中,其对邻信道的寄生辐射功率抑制也较良好,其带外寄生辐射功率抑制比比未加预失真时改善最高10.8dB左右。
其他文献
针对国有规模化农场对大型农业机械高质、高效、精准作业的需求,研究一种具有遥操作和自主导航功能的后装型拖拉机驾驶机器人,可模块化、快速、无损安装在拖拉机驾驶室内,实现拖拉机的智能化升级,有利于提高农机的智能化水平和农业生产效率。本论文主要研究内容和结论如下:(1)模块化拖拉机驾驶机器人的机械结构设计。基于拖拉机各执行机构的操作空间和参数,通过Solidworks软件进行拖拉机驾驶机器人结构设计,主要
癌症是现代医学中最具挑战性的问题之一。虽然近年来癌症的诊断与治疗方法有了很大的发展,但是癌症患者总体存活率仍然没有显著改善。脂质体具有良好的生物相容性,有助于提高难溶性药物溶解度、生物利用度与稳定性,并且可以实现控制释放的作用,在药物载体研究领域引起了广泛的关注。本论文以盐酸米托蒽醌为模型药,通过处方优化,制备了一种同时包裹盐酸米托蒽醌与PLGA纳米粒子的盐酸米托蒽醌脂质体,探讨了利用超声刺激控制
硒元素是人体维持正常机能的重要物质,能够预防多种疾病的发生,但过量的硒会对人体产生毒害作用。对植物而言,硒也是一种有益元素,硒过量同样产生毒害效应。硒超富集植物能够耐受高浓度的硒,它们具有吸收、同化大量硒的能力,可以利用这类植物将富集的硒为缺硒地区提供有机硒营养,因此研究硒超富集植物的硒耐受特性十分必要。本研究以硒超富集植物—壶瓶碎米荠(Cardamine hupingshanensis)为研究材
淀粉是水稻种子重要的贮藏物质和水稻胚乳的主要构成成分。淀粉的合成受到多种酶的调控,是一个复杂而精密的过程。淀粉合成异常会导致胚乳呈现局部不透明或完全不透明的性状,影响其品质。虽然已报道有多个调控淀粉合成的基因,但对淀粉合成的分子机制和调控网络的理解还不够全面。粉质胚乳突变体和垩白突变体是研究淀粉合成分子机制和调控网络的理想材料。在粳稻品种W017和N2两个化学诱变突变体库中,分别筛选得到稳定遗传的
近年来,钾离子电池因其优异的理论性能以及丰富的钾储量,作为锂离子电池的替代物,其成为了储能领域的热点话题,因此电极材料的开发对钾离子电池的发展至关重要。过渡金属硫族化合物因其独特的层状的结构,成为了一种有潜力的电极材料。与石墨相似,在过渡金属硫族化合物的层间存在着微弱的范德华力,这将有助于储能离子的传输。然而,过渡金属硫族化合物在应用时,通常需要与其他材料进行复合。因此,合理的设计过渡金属硫族化合
棉花是重要的经济作物,棉纤维是纺织和精细化工的原料,也是重要的战略物资。纤维次生细胞壁(SCW)的生物合成直接影响纤维的产量及品质,而SCW生物合成过程受多层转录调控网络的调节,其中转录因子(TF)起着重要的作用。NAC转录因子是植物特有的一类转录因子,在不同植物中广泛存在。实验室前期研究发现,NAC140是一个棉纤维次生壁专化表达基因。本研究进一步对该基因的结构、功能及调控网络等分子特征进行分析
随着公众社会参与意识的增强,以及移动互联网技术的快速发展,公众参与社会热点话题讨论的积极性日益高涨。某一热点事件发生后,人们会根据所获取的信息形成对事件的初始态度,并通过网络论坛、讨论组等与他人进行交流,在同他人的争执或肯定中使得舆情不断发展至高潮,由此形成舆情极化现象。舆情极化现象产生后,在相关信息的影响下会进一步形成舆情反转或多维舆情极化现象,进而衍生出一系列的网络暴力行为和极端群体性事件,给
曲梁是当今传统和新兴的土木工程和机械工程领域中常见的结构和功能元件。曲梁的加工有很多方法,包括当前流行的3D打印技术,可以用不同方法和材料加工具有周期性特征的曲梁以及各种曲梁的组合结构。对于现有的和潜在的应用而言,曲梁结构的某些特性,如变形和振动,对于在设计和应用中确保安全和实现功能是非常重要的。本文的研究对象是曲梁,包括常曲率曲梁和变曲率曲梁,还有周期曲梁以及组合曲梁。首先,论文简单介绍了用于曲
海洋致病菌,由于其广泛存在于海水及水产品中,危害人体健康,因此对其进行高灵敏检测尤为重要。光电化学生物传感器由于其速度快、操作方便、成本低廉等优点,在生物检测分析领域被广泛应用。本论文基于电化学发光(ECL)、阳极溶出伏安法(ASV)、快速扫描伏安技术及环糊精-蒽主客体体系,构建了三种可以高灵敏检测海洋致病菌的光电化学生物传感器。具体研究内容如下:1、基于ECL和ASV双模式检测副溶血性弧菌的法拉
针对现代航空、航天及切削刀具等产业中关键部件在高低温、高速高压及重载等恶劣工况下出现摩擦磨损严重、零件失效及使用寿命低等问题,发展从室温至高温具有持续润滑性能的涂层具有重要的理论和实际应用价值。本论文基于氮化物陶瓷硬质基础相与多润滑相复配和涂层表面原位自生润滑相的协同来实现宽温域低摩擦系数和低磨损的研究方法,开展了氮化钼基涂层的制备、微观结构、机械力学及宽温域摩擦磨损性能的研究工作,探究了涂层组织