论文部分内容阅读
随着能源需求的持续增长以及能源结构的调整需求,核能正受到越来越广泛的重视,对于核电工程相关热点问题的研究势在必行。我国第三代核电堆型AP1000结构模块墙体采用双钢板混凝土结构,对于此种结构的研究多集中在民用建筑的钢板混凝土组合剪力墙,对核电工程相关的研究仍处于初步阶段,尤其抗震设计缺少相应的设计规范,另外,结构模块自身支架系统设计时考虑的主要是模块的运输和吊装荷载,对浇筑混凝土时的侧压力考虑不足,导致目前模块变形成为关键问题,针对上述核电工程钢板混凝土结构的研究和应用中存在的问题,本文开展了以下研究工作。首先针对AP1000结构模块墙体用的自密实混凝土利用正交试验进行了配合比设计,对混凝土的抗压强度、劈拉强度及坍落扩展度进行测定,得到了力学和工作性能良好的自密实混凝土配合比。制作了墙体模块的典型单元试验模型,进行了混凝土分层浇筑试验,得到混凝土侧压力与浇筑高度的关系,并对墙体的变形及应变进行了分析,研究表明:在分层浇筑过程中,自密实混凝土侧压力沿高度方向呈线性变化,且自其底部向上,侧压力逐渐减小,最大侧压力出现在浇筑当前层的底部,为按液压公式P=?h计算的50%~80%,同时,先期凝结的混凝土侧压力降低。根据试验确定的侧压力分布规律,利用有限元软件ABAQUS对试验模型进行了数值模拟,模拟结果与试验结果拟合较好;建立两种实际墙体模型,对其进行了不同浇筑高度下分层浇筑工况的数值模拟,确定合理的单层浇筑高度为5m。根据模拟结果确定了槽钢应力和钢板变形为关键的控制条件,并推导出二者的计算公式,在此基础上,对结构模块墙体的关键设计参数进行扩参分析,结果表明:实际工程设计偏于保守,可小幅增大角钢和槽钢间距,以达到提高施工效率、节约成本的目的。论文的研究可为核电工程设计与施工提供参考。设计10种不同参数的结构模块墙体,利用有限元软件ABAQUS研究钢板厚度、角钢间距和槽钢间距对其抗震性能的影响,通过滞回曲线和骨架曲线等研究墙体承载力、刚度及耗能能力,在此基础上,对其刚度计算模型进行简化,提出初始刚度的计算公式,为核电相关的钢板混凝土结构抗震设计提供理论支撑,论文的研究成果对我国核电工程的发展具有重要的意义。