【摘 要】
:
汽车的普及极大的改善了人们的出行条件,但是交通事故的频发带来了巨大的经济损失甚至危及人身安全。行驶过程中的车辆失稳是交通事故的一个重要诱因,现阶段,智能汽车的发展一定程度上改善了汽车的稳定性。然而,目前已有的车辆稳定性控制系统大多是基于传统电子液压制动系统进行控制,难以满足智能汽车对制动系统性能的可靠性与实时性的需求。智能汽车线控制动系统应能在部分元件失效时依然能够保持一定的效能,同时,还要求系统
论文部分内容阅读
汽车的普及极大的改善了人们的出行条件,但是交通事故的频发带来了巨大的经济损失甚至危及人身安全。行驶过程中的车辆失稳是交通事故的一个重要诱因,现阶段,智能汽车的发展一定程度上改善了汽车的稳定性。然而,目前已有的车辆稳定性控制系统大多是基于传统电子液压制动系统进行控制,难以满足智能汽车对制动系统性能的可靠性与实时性的需求。智能汽车线控制动系统应能在部分元件失效时依然能够保持一定的效能,同时,还要求系统具备较快的增压速度以及较高的调压精度。针对上述要求,本文设计了一种满足智能汽车需求的双源冗余制动系统(DSRB,Dual-source Redundant Braking system),并基于该系统对车辆稳定性控制进行研究。首先,通过分析智能汽车对制动系统的特殊要求,设计了一种双源冗余制动系统,分别对其三种工作模式进行了介绍,利用AMESim软件建立了DSRB系统模型,并基于该模型分别在DSRB系统正常工作、部分失效和完全失效三种工况下进行仿真。结果表明,DSRB系统能够快速调节轮缸压力,较EHB系统增压速度提升0.33s,同时,在DSRB系统发生部分失效甚至完全失效时,系统依然能够快速增压、保压和减压,即便在完全失效工况下DSRB系统增压速度比EHB系统快0.08s。这为下面基于DSRB系统的轮缸压力控制研究提供了有效支撑。其次,介绍了基于DSRB系统的轮缸压力控制算法,设计了轮缸压力PID控制器,在AMESim、Simulink中分别搭建了DSRB系统的物理仿真模型以及控制模型,并基于该模型分别在其正常工作、部分失效和完全失效三种工况下进行联合仿真。结果表明,在ESC工况下,基于PID控制的轮缸压力控制算法能快速且精确的对轮缸压力进行控制,不考虑助力机构作用下响应时间为0.3s。此外,在DSRB系统发生部分失效甚至完全失效时,系统依然能够快速增压、保压和减压,仅在系统完全失效工况下二次增压时速度降至0.7s。这为下文车辆稳定性良好控制提供了有力的保障。然后,从失稳原因出发,设计了车辆稳定性状态判定算法,选择直接横摆力矩为间接控制参数,设计了车辆稳定性二维模糊控制器,选取对应的车轮进行控制,将附加横摆力矩以附加制动力的形式施加到被控车轮上,进而对车辆行驶过程出现不稳定状态进行修正。这为车辆稳定性控制仿真提供了理论依据。最后,基于AMESim、Simulink和CarSim建立了双源冗余制动系统仿真模型,分别在急转弯和紧急转向避障两种极限工况下对车辆稳定性控制进行了仿真。结果分析表明,所设计的双源冗余制动系统对车辆稳定性有良好的控制效果。
其他文献
低GI饮食可有效预防和改善糖尿病、心血管疾病和肥胖等慢性病,荞麦作为公认的低GI食品原料受到越来越多的关注。苦荞多酚(芦丁和槲皮素)是荞麦中的主要活性物质,可显著抑制淀粉消化。目前关于苦荞多酚抑制淀粉消化的研究多从抑制淀粉消化酶活性角度展开,而研究淀粉结构及淀粉与多酚相互作用影响淀粉消化的报道较少。为此,本论文研究了淀粉精细结构与芦丁抑制淀粉体外消化的关系以及多酚和淀粉间的相互作用,初步阐述多酚抑
2-甲基异茨醇(2-MIB)是饮用水源中的典型嗅味物质之一,给饮用水安全和质量带来了极大的挑战。现阶段,饮用水处理厂多采用活性炭吸附、臭氧氧化等物理化学方法去除饮用水源中的嗅味物质。近年来,微生物降解嗅味物质成为研究的热点,因其在饮用水或废水处理中具有较好的应用前景。然而,获得嗅味物质的高效降解微生物是关键。为此,本论文以2-甲基异茨醇为模式体系,从饮用水源太湖的样品中筛选能够高效降解2-甲基异茨
生姜(Zingiber officinale Roscoe)是我国的优势特产蔬菜,作为一种香辛料,是日常生活中不可或缺的调味品。近年来,干制生姜由于保质期长、易存储、用途广泛等优势,市场需求日趋增高,因此干燥依旧是提高生姜产品价值的主流加工方式。由于生姜外观多呈指状分支,又在泥土中生长,夹缝间藏污纳垢,在对其进行干燥前会面临清洗困难的问题。无论是日常生活还是工业生产中,生姜的清洗都需要耗费大量的水
玉米醇溶蛋白(Zein)作为来源广泛、环境友好的天然大分子蛋白质,具有良好的生物相容性、独特的自组装特性,是负载生物活性物质的良好载体。玉米醇溶蛋白与多糖可以相互作用形成复合物,多糖的参与使得蛋白质的凝胶性、乳化性、溶解性、起泡性等重要的功能性大大改善,能对生物活性成分起到很好的包埋和保护作用,但常规制备方法仍存在包埋效率低、稳定性差等不足。本文采用多模式频率超声波调控玉米醇溶蛋白-多糖的自组装并
智能驾驶汽车可以在一定程度上减少交通事故、提高车辆的安全性、缓解交通拥堵、减轻驾驶疲劳、降低燃料消耗,给人们日常汽车的使用带来便利,近些年来受到了各大汽车厂商和相关研究机构的广泛关注,汽车的智能化、网联化和电动化是未来汽车工业发展的方向,智能驾驶汽车有着广阔的前景。实现智能汽车无人驾驶的关键技术主要包括环境感知、决策规划和控制执行三部分,而轨迹规划在实现车辆无人驾驶方面起着十分重要的作用。除了安全
由芸苔生链格孢菌(Alternaria brassicicola)引起的黑斑病是采后西兰花储运及销售过程中最常见且发病率最高的真菌性病害之一,由此引起的腐烂和品质劣变可造成巨大的经济损失。利用拮抗酵母进行生物防治的方法因其高效、安全等优点,被广泛应用于果蔬采后病害的控制,且已经取得了良好的效果。但拮抗酵母应用于西兰花采后病害控制的研究报道很少,其控制机制尚不明确。本论文从健康西兰花上筛选对采后西兰
离心泵广泛应用于水利、电力、石化、舰船、航空航天等关系国计民生与国家安全各个部门,是保障各种能量传递的核心设备。为满足国家安全与国民经济建设发展的需求,离心泵正在向大型化与高参数化发展,因而对离心泵的安全运行与智能监控提出了越来越高的要求。空化不仅会影响离心泵本身的使用寿命,而且还会对工艺流程或装置系统的可靠性产生严重的影响,因此,空化的监测与控制是离心泵工程应用中急需解决的关键性核心问题。由于传
转向系统是车辆底盘系统的重要组成部分之一,其对车辆动态行驶性能具有重要影响。四轮转向系统是在传统的前轮转向的基础上附加一个后轮转角,实现后轮随动转向或者主动转向,通常低速时前后轮反向转动,提高了机动性和灵活性,高速时前后轮同向转动,提高了操纵稳定性。传统的四轮转向技术以主动后轮转向为主,很难同时控制汽车的质心侧偏角和横摆角速度,对于汽车操纵性能的提升有限。线控主动四轮转向汽车将线控技术和四轮转向技
使用可降解材料来制备压裂球,不仅可以降低石油开采过程中的风险,提高开采效率,还可以减少对石油资源的污染,是石油开采的发展趋势。镁合金由于具有较好的力学性能和加工性能,且在电解质溶液中易于溶解,是制备可溶性压裂球的理想材料。文章以可溶性镁合金为研究对象,通过铸造及后续热处理制备了可溶性镁合金。使用OM、SEM、XRD、电化学工作站等仪器结合拉伸测试、压缩测试、腐蚀失重测试、电化学测试等方法研究了合金
立式长轴消防泵主要应用于海上平台、海上码头等远离陆地、缺乏大量陆上水源供应的消防场所,以海水为消防水源,具有占地面积小、流量大、扬程高、启动迅速和运行稳定等特点。立式长轴消防泵与其他普通泵的区别在于,其泵轴很长,且传动轴的长度可以根据海平面的高度进行调节。当海平面低于泵组安装基础时,立式长轴消防泵可以倒灌进水,能够避免因为较高的吸上高度而产生的引水和汽蚀等问题。立式长轴消防泵作为一种大型立式旋转机