【摘 要】
:
令A=Z[v]?,兵中m是v-1和栗奇素数p生成的理想,v是未定元.A’=Q(v)是A的分式域,(aij)n×n是对称Cartan矩阵,令U’是A’上相伴于对称Cartan矩阵(aij)n×n的量子代数.U是U’的由EiN,FiN,Ki,Ki-1(i= 1,2,...,N≥0)生成的A子代数,则U是A-Hopf代数.本文讨论了函子D(-),H(-)及诱导函子H~0(U/Ub,-)的系数扩张的若干性
论文部分内容阅读
令A=Z[v]?,兵中m是v-1和栗奇素数p生成的理想,v是未定元.A’=Q(v)是A的分式域,(aij)n×n是对称Cartan矩阵,令U’是A’上相伴于对称Cartan矩阵(aij)n×n的量子代数.U是U’的由EiN,FiN,Ki,Ki-1(i= 1,2,,N≥0)生成的A子代数,则U是A-Hopf代数.本文讨论了函子D(-),H(-)及诱导函子H~0(U/Ub,-)的系数扩张的若干性质,即对A代数Γ,如上函子的基环从A扩张到Γ时,函子DΓ(-),HΓ(-),HΓ~0(UΓ/UΓb,-)具有的性质.设A代数Γ是域,本文证明了UΓ模同构D(λ)(?)AΓ(?)DΓ(λ);若可积U模M是有限秩自由的,则有UΓ模同构D(λ(?)M)(?)Γ(?)UΓ((λ(?)M)Γ).对A代数Γ,证明了HΓ(-)也是正合共变的,且量子坐标代数HΓ(Γ)(?)Γ[UΓ]是自由Γ模.本文还证明了对A代数Γ,λ∈X+,有UΓ模同构H~0(U/Ub,λ)(?)AΓ(?)HΓ~0(UΓ/UΓb,λ),若A代数Γ作为A模是平坦的测HΓ~0(UΓ/UΓ~0,-)是正合函子.
其他文献
本文研究了非线性Sine-Gordon方程的有限差分法数值解法,首先给出了非线性Sine-Gordon方程的三种差分格式:四阶三层显格式、四阶三层隐格式、高精度三层紧致格式.对这三种差分格式的局部截断误差进行了分析和比较,并且分析了它们的稳定性与收敛性,接下来通过数值实验比较了它们的运算时间与精度,进而验证了这些格式的有效性与可靠性.在此基础上,将非线性Sine-Gordon方程推广到高维非线性S
本文在流函数为非凸条件下研究广义BBM-Burgers方程初边值问题解的渐近性态.对于边界值为常数的广义BBM-Burgers方程,用L~2加权能量方法证明了在初始值为小扰动的情形下,相应的初边值问题解的整体存在性及其解渐近收敛到一个稳定波或一个稀疏波或这两种非线性波的叠加。
本文首先给出了一些基本概念,并且总结了几个著名的迭代法的研究状况以及它们的收敛条件,在前人的基础上利用二步法的思想对Newton法进行了改进,得到了一个新的快速迭代法;其次针对Halley方法,利用它的空间性质得到了Halley二步法的推到过程;最后对Newton迭代法,Halley迭代法,Halley型二步迭代法和新型快速迭代法进行了数值上机实践,证明了新方法的可行性。
本文研究了亚纯函数Nevanlinna值分布理论的一些应用,包含一类亚纯函数的零点和值分布,以及复域内一类高阶代数微分方程组亚纯解的存在性等若干问题.全文共四章.第一章主要是介绍Nevanlinna值分布理论的基础知识,常用记号和一些基本定理.第二章主要研究了一类形如fm(fk)n的函数的值分布问题,讨论了fm(fk)n -(?)(z)的零点的较为精密的定量估计.得到了一个关于超越亚纯函数f(z)
时滞积分不等式在微分方程理论与应用中发挥重要作用.近年来,越来越多的这类不等式被发现,时滞积分不等式的显式界问题引起了许多学者的高度重视.寻求新的工具、方法,仍然是我们迫切的任务.本文以Ou-Iang积分不等式为基础,建立了几类时滞积分不等式,推导了其未知函数的显式界,讨论了它们在一些积分方程和微分方程求解方面的应用,所得结论改进和推广了文献中一些相关的结果.本文共分三章,第一章通过对一些相关结果
模式识别覆盖领域十分广泛,如字符识别、语音识别、指纹识别等等,传统的模式识别方法有决策树、判别分析、神经网络等。由于样本数量有限、不易收敛到全局最优值、难以非线性化等原因,这些方法难以在实际应用中得到满意的结果。于是,建立在统计学习理论上的支持向量机应运而生。支持向量机是一种具有良好泛化能力的模式识别方法,在小样本、非线性及高维条件下的识别问题中表现出优秀的识别能力。近年来,模糊数学理论被引进到支
本文研究单个非线性双曲守恒律的n维Riemann初边值问题,其中边界为n-1维光滑流形,初值和边界值各为常数。以二维情形为代表,研究了边界条件的表达式和几何特征,给出了单个守恒律的二维一般初边值问题的分片光滑弱熵解满足的条件,包括Rankine-Hugoniot边界面条件、内部熵条件不等式、边界熵条件不等式等。根据唯一性,构造性的给出了单个守恒律的二维Riemann初边值问题的整体弱熵解。首先构造
DNA计算是一种基于生化反应的新型计算方式,自从1994年Adleman的开创性的实验以来,目前已成为一个非常热门的研究领域。本论文在第二章详细介绍了DNA分子的结构、计算机理及实现方式;在第三章对DNA计算模型中的边权编码方式进行了分析和比较,着重对韩爱丽提出的基于边权的编码方案的中国邮递员问题的DNA计算模型进行了分析和总结;在第四章提出了适用于一般无向图的基于边权编码的中国邮递员问题的DNA
在对粒子群优化算法进行了详细的分析和介绍了标准的PSO算法的基本原理、数学描述、算法参数和流程基础上,再介绍本文的主要工作。首先,在离散序列领域对粒子群优化算法进行重构,提出了本文的改进思路,即把可变社会影响因子引入离散序列领域的计算公式。与标准的粒子群优化算法相比,该算法在避免过早的陷入局部最优等方面有比较好的效果。针对TSP问题,重新设定参数,引入公共知识库进行粒子群初始化,用改进的PSO算法