6082铝合金熔化极气体保护焊接头微观组织及性能研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:liujun87654
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
6082铝合金凭借着其较高的比强度、良好的耐蚀性和加工性能,成为了交通运输领域使用较多的结构材料,在实现轻量化的同时也响应了国家节能减排的号召。各种6082铝合金结构件的制造,如汽车轮毂,高铁车体等都离不开焊接技术。在实际生产中,熔化极惰性气体保护焊(MIG)凭借其生产效率高,操作简单,适用性强的特点成为了6082铝合金最主要的焊接方法。但是目前对于6082铝合金MIG焊的研究,特别是中厚板铝合金,大多还停留在比较表层的阶段,缺乏对接头组织及性能深一步的探索,本文的研究目的即为解决这些问题。本文采用ER5087焊丝,使用熔化极惰性气体保护焊方法焊接6082-T651铝合金板的对接和十字焊接接头,板材厚度分别为12 mm和15 mm。研究两种接头形式下焊缝的成形机理和组织特征,以及接头不同区域的元素分布情况。探究不同的焊接工艺参数对焊缝成形、接头力学性能、耐腐蚀性能和电化学性能的影响。研究成果如下:通过6082-T651铝合金多道焊对接实验发现,接头不同区域具有不同的显微组织和织构特征,焊缝边缘为柱状晶区,焊缝中心为等轴树枝晶,母材和热影响区组织基本相同,为铝基体上沿轧制方向分布着粗大的块状Al-Si-Fe-Mn相。焊缝具有典型的立方织构,晶界偏差角主要是小角度晶界,越靠近焊缝中心,织构特征越弱,大角度晶界的比例越高。焊接接头的最大抗拉强度为232 MPa,接头正弯的弯曲角度达到90o无裂纹,接头的显微硬度沿焊缝中心对称分布,并且存在两个软化区:焊缝区和过时效区。腐蚀主要是发生在第二相周围的由电位不同导致的局部腐蚀,各区域耐蚀性顺序为:母材>热影响区>焊缝区。通过6082-T651铝合金船型焊十字焊接实验发现,当焊接热输入较低时,焊缝根部存在未熔合的焊接缺陷,熔深熔宽较小,随着热输入增加,焊缝凸度逐渐减小,熔深熔宽增加。最大抗拉强度为239 MPa,断裂位置均位于焊缝中心,以焊根为起点,沿45o方向断裂,断口呈现韧性断裂和剪切断裂两种断裂模式。腹板和翼板硬度值呈对称分布,不同参数下焊缝区硬度值差别不大,在75~81 HV之间。随焊接热输入增加,热影响区范围越来越大,硬度值逐渐减小。焊缝局部位置存在以空隙缺陷为中心呈龟裂状扩展的腐蚀裂纹,上面覆盖有白色的Al(OH)3腐蚀产物,电化学参数表明各区域耐蚀性与对接接头相同,母材最强,热影响区次之,焊缝区最差。
其他文献
Cu-Ni-Sn合金作为环保型导电弹性铜合金,其强度较高,且具有良好的导电性能,高温稳定性,抗应力松弛性能及耐腐蚀性能,其中Cu-15Ni-8Sn合金的强度可以高达1300Mpa(与Cu-Be合金相当),广泛用于各种电子弹性元件中。但Cu-Ni-Sn合金在铸造过程中存在Sn偏析及后续的时效过程中容易产生不连续析出相等问题,严重影响合金的强度与加工性能。为了解决以上问题,以Co元素作为第四组元设计了
Co基非晶合金具有高磁导率、低矫顽力(Hc)、低铁损和磁致伸缩系数等特性,尤其是其高频软磁特性极佳,在电子产业和通信技术领域具有越来越重要的应用价值。但软磁性Co基合金的非晶形成能力(GFA)相对不高,而限制了其应用范围。利用非晶合金在其过冷液相区(ΔTx)的超塑性,不仅可以制备大尺寸的块体非晶,还可以批量化生产微型磁元器件,而适用于超塑性成形加工的非晶合金需要具有较宽的ΔTx和较高的GFA。但目
非晶合金因其独特的长程无序短程有序的结构而具有优异的力学、物理和化学性能。迄今已发展出了上千种非晶合金,它们主要是以Pd、Mg、La、Zr、Cu等金属元素为基的金属基合金,而以非金属元素为基的非晶合金极少,仅有Si和Ge基非晶合金的报道。这两种非金属基合金的强度、硬度和热稳定性都明显高于相同合金系的Al基非晶合金;它们还具有远高于其它非晶合金、接近半导体的极高电阻值。但Si基非晶合金的结构稳定性差
随着电子信息技术的快速发展,电子设备的信号处理日趋高速化,达到兆赫兹(MHz)频率范围,这对吸波材料提出了更大的挑战。提升吸收剂吸波性能的关键是提高阻抗匹配和能量衰减。而在兆赫兹频率范围内材料的磁导率通常远远小于介电常数,因此要求提高材料的磁导率来改善阻抗匹配和提高能量衰减。本文采用机械合金化方法成功制备了系列FeCoNiCr Cu高熵合金粉末,通过改变Cr和Cu元素摩尔比以及改进合金制备工艺,调
航空发动机的发展水平决定着飞机的使用性能,目前已经成为衡量一个国家科技水平和综合国力的重要指标之一。涡轮盘作为航空发动机的核心热端部件,工作条件极为恶劣,失效形式十分复杂,直接决定着航空发动机能否安全服役。因此要求涡轮盘材料在其使用温度范围内要有尽可能高的疲劳、持久性能以及良好的抗蠕变能力。以FGH4096合金为代表的粉末高温合金,解决了涡轮盘高合金化造成的凝固偏析和变形困难的问题,显著提高了涡轮
在电子封装中,Sn基钎料与Cu焊盘发生钎焊界面反应,生成金属间化合物(Intermetallic Compound,IMC),进而形成微互连焊点。为了满足电子器件微型化和集成化的发展需求,微互连焊点尺寸逐渐减小,这将会使界面IMC所占比例增大。而Cu-Sn型IMC是脆性相,过厚的IMC层会降低微焊点的力学性能和可靠性,因此需要对IMC的生长进行有效控制。由于形成微焊点的钎焊回流过程中发生液-固界面
新型B基B-Sm(La)-Co非晶合金具有极高的热稳定性和硬度,非晶态合金的宏观性能与其局部原子结构密切相关,但是由于其复杂的原子结构及有限的实验分析手段,非晶合金的原子结构和‘结构-性能’关系尚未得到很好地认识,计算机模拟目前已经成为研究材料的原子尺度结构细节的有效方法。本文采用从头算分子动力学(AIMD)的模拟方法对B基非晶合金进行模拟研究,通过对比B基B50Sm10Co40和Co基Co65S
SiC陶瓷是耐事故容错燃料中的理想包壳材料,然而由于其硬度较大,不易成形复杂形状零部件,限制了使用范围。Kovar合金属于定膨胀合金,具备良好的加工性,其热膨胀系数在室温下与SiC陶瓷相近。SiC/Kovar异种材料连接结构在核工业具有较大应用价值,如何实现二者有效连接是目前存在的技术难题。本文基于Ag-Cu-Ti粉钎料采用活性钎焊法对SiC陶瓷和Kovar合金实现了有效连接。研究了钎焊温度、保温
不锈钢具有优异的综合性能,近年来我国对不锈钢的需求依然呈增长态势,但现代化工业生产对不锈钢的性能提出了更高要求,我国对不锈钢的需求慢慢从量的需求转变为对质的要求。开发新的更高性能的钢种需要花费大量的时间和精力,成本高,难度大,而对当前已有钢种进行强化则相对容易实现。传统的强化方式包括沉淀强化、细晶强化、热处理强化和加工硬化等,其中细晶强化可以同时提高不锈钢的强度和塑性。通常用于不锈钢晶粒细化的方式
实现高温固体表面液滴的定向输运在传热、微流控以及减阻等领域具有广阔的应用前景。研究发现,当表面温度超过某一值时,液滴将悬浮在蒸发所产生的蒸汽层上,而不与表面直接接触,这被称为Leidenfrost效应,对应的温度被称为Leidenfrost温度。现有研究主要通过设计复杂微结构表面引导气流定向扩散以实现高温表面液滴的定向输运。然而,现有研究中高温表面液滴的定向输运速度通常为10~20 cm/s,难以